Colloquium

Présentation

Le colloquium lorrain de mathématiques est l’évènement mensuel à destination de tous les membres du laboratoire. Il a lieu sur les sites de Metz et Nancy.

Les organisateurs sont Renata Bunoiu et Hervé Oyono Oyono pour Metz et Youness Lamzouri pour Nancy.

L’exposé est donné par une oratrice ou un orateur reconnu pour ses qualités scientifiques et sa capacité à s’exprimer devant un large public de mathématicien(ne)s. Cet exposé a lieu généralement le mardi à 16h30, il est précédé d’un thé pour tous les membres du laboratoire à 16h et se poursuit par un dîner en ville pour ceux qui le souhaitent.

Exposés à venir

Archives

 Archives

Problème de Steklov, vagues sur une plage et graphes quantiques

Catégorie d’évènement : Colloquium Date/heure : 1 juin 2021 16:30-17:30 Lieu : Oratrice ou orateur : Iosif Polterovich (Université de Montréal) Résumé :

Le problème aux valeurs propres de Steklov est récemment devenu un sujet central en géométrie spectrale.
Je présenterai un survol de certains développements récents dans cette thématique, avec un accent particulier sur le comportement spectral asymptotique pour les polygones. Ce problème est étroitement lié à des questions classiques en dynamique des fluides, ainsi qu’en théorie des graphes quantiques. La célèbre question « Peut-on entendre la forme d’un tambour ? » dans le contexte du problème de Steklov sera également discutée.

La connaissance du concept de vagues sur une plage est un prérequis; toutes les autres notions seront expliquées.
L’exposé est basé sur des travaux en collaboration avec Michael Levitin, Leonid Parnovski, David Sher, et Stanislav Krymski.


Rigidité pour les processus ponctuels

Catégorie d’évènement : Colloquium Date/heure : 20 avril 2021 16:30-17:30 Lieu : Oratrice ou orateur : Mylène Maïda (Université de Lille) Résumé :

On va considérer dans cet exposé diverses configurations aléatoires de points (appelées aussi processus ponctuels), sur l’axe réel ou dans le plan notamment. Les processus ponctuels les plus étudiés par les probabilistes sont les processus de Poisson : le nombre de points dans une boîte fixée est dans ce cas indépendante de la configuration à l’extérieur de la boîte. Au contraire, certains processus ponctuels naturels sont rigides, c’est-à-dire que le nombre de points dans la boîte fixée est prescrit exactement par la configuration à l’extérieur. En termes physiques, il serait impossible de rajouter de force un point supplémentaire dans la boîte sans dépenser une énergie infinie.
Cette propriété de rigidité est intrigante et se manifeste souvent pour des systèmes de particules fortement corrélés, provenant par exemple de la combinatoire, de la théorie des représentations ou des matrices aléatoires. Je montrerai plusieurs tels exemples et expliquerai comment on peut aborder mathématiquement les questions de rigidité.


Les grandes valeurs de la fonction zêta de Riemann sur l'axe critique

Catégorie d’évènement : Colloquium Date/heure : 30 mars 2021 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Louis-Pierre Arguin (City University of New York)

 
Arguin

Les grandes valeurs de la fonction zêta de Riemann sur l’axe critique (et non seulement les zéros!) jouent un rôle important en théorie des nombres. Par exemple, l’hypothèse de Lindelöf stipule que le module de la fonction sur l’axe critique à la hauteur T croît plus lentement que toute puissance de T. Il s’avère qu’il est plus facile de décrire les grandes valeurs de zêta dans des intervalles courts. Dans cet exposé, je décrirai les travaux récents sur cette question. En particulier, j’expliquerai les connexions intéressantes entre les grandes valeurs de zêta et les statistiques des valeurs extrêmes des processus branchants en probabilités.


Les grandes valeurs de la fonction zêta de Riemann sur l’axe critique

Catégorie d’évènement : Colloquium Date/heure : 30 mars 2021 16:30-16:30 Lieu : Oratrice ou orateur : Louis-Pierre Arguin (City University of New York) Résumé :

Les grandes valeurs de la fonction zêta de Riemann sur l’axe critique (et non seulement les zéros!) jouent un rôle important en théorie des nombres. Par exemple, l’hypothèse de Lindelöf stipule que le module de la fonction sur l’axe critique à la hauteur T croît plus lentement que toute puissance de T. Il s’avère qu’il est plus facile de décrire les grandes valeurs de zêta dans des intervalles courts. Dans cet exposé, je décrirai les travaux récents sur cette question. En particulier, j’expliquerai les connexions intéressantes entre les grandes valeurs de zêta et les statistiques des valeurs extrêmes des processus branchants en probabilités.


Inégalités de Carleman

Catégorie d’évènement : Colloquium Date/heure : 9 février 2021 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Nicolas Lerner (Sorbonne Université)

Lerner

Les inégalités de Carleman portent le nom du mathématicien suédois de l’université de Lund, Torsten Carleman (1892-1949). Celui-ci inventa en 1939 une méthode pour démontrer des propriétés de continuation unique pour des solutions d’équations aux dérivées partielles elliptiques. Ces méthodes ont été développées par la suite dans maints domaines des mathématiques. Dans cet exposé, nous suivrons le cours de l’histoire et examinerons pour commencer les résultats classiques d’unicité de Cauchy, dus à Alberto Calderón et Lars Hörmander, obtenus à la fin des années cinquante par la méthode de
Carleman. Nous évoquerons ensuite une partie des développements de cette méthode dans la période plus récente, avec des applications en théorie du contrôle, en théorie spectrale et en mécanique des fluides.


Quantum chaos, eigenvalue statistics and the Fibonacci sequence

Catégorie d’évènement : Colloquium Date/heure : 19 janvier 2021 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Zeev Rudnick (Université de Tel-Aviv)

 
Zeev-Rudnick

One of the outstanding insights in the field of « Quantum Chaos » is a conjectural description of local statistics of the energy levels of simple quantum systems according to crude properties of the dynamics of classical limit, such as integrability, where one expects Poisson statistics, versus chaotic dynamics, where one expects Random Matrix Theory statistics. These insights were obtained by physicists in the last quarter of the 20-th century. However, mathematicians are far behind in understanding the scope and validity of this theory. The first part of the lecture will be dedicated to an introduction to these conjectures. In the second part, I will describe more recent work on statistics of the minimal gap between the eigenvalues for one such simple integrable system, a rectangular billiard having irrational squared aspect ratio. When the aspect ratio is the « golden ratio », the problem involves some curious and entertaining properties of the Fibonacci sequence.


Chimie des fibres de Milnor

Catégorie d’évènement : Colloquium Date/heure : 15 décembre 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Patrick Popescu-Pampu (Université de Lille)

 
Popescu-Pampu

Toute hypersurface singulière dans une variété lisse est localement une limite d’hypersurfaces lisses : il suffit de la regarder comme niveau d’une fonction. C’est aussi le cas, pour une raison analogue, des intersections complètes d’hypersurfaces. Lorsqu’on ne s’intéresse qu’à un germe d’intersection complète au voisinage de l’un de ses points singuliers, les parties des hypersurfaces lisses qui tendent vers lui s’appellent les fibres de Milnor du germe. Ce sont des variétés lisses, compactes, à bord, bien définies à difféomorphisme près. Bien qu’elles aient fait l’objet d’études incessantes depuis que John Milnor les a introduites en 1968, leur caractérisation parmi les variétés lisses est encore largement ouverte. Walter Neumann et Jonathan Wahl conjecturèrent en 2004 que pour les germes en épissure qu’ils avaient introduits quelques années auparavant, les fibres de Milnor pouvaient être reconstruites à partir de celles de germes en épissure élémentaires. Un peu comme une molécule se laisse décomposer chimiquement en atomes. J’expliquerai le contexte qui les a menés à cette conjecture, ainsi que les grandes lignes de sa preuve, que j’ai obtenue avec Angelica Cueto et Dmitry Stepanov.


Introduction aux billards dans les pavages

Catégorie d’évènement : Colloquium Date/heure : 22 septembre 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Olga Paris-Romaskevich (CNRS, Université d’Aix-Marseille)

 
Paris-Romaskevich

En mathématiques, nous savons jouer au billard dans une table de n’importe quelle forme.
Je parlerai dans mon exposé d’un nouveau jeu encore moins conventionnel — jouer au billard à l’intérieur d’un pavage.

Un tel système dynamique s’avère être lié aux problèmes classiques (et moins classiques) en dynamique (dynamique des échanges d’intervalles) et en topologie (problème de Novikov des sections planes des surfaces 3-périodiques).

Je vais me concentrer sur le cas du billard dans un pavage triangulaire périodique — celui que je comprends le mieux !

——————————

Devoir-maison (pas très dur) avant l’exposé :
visionner un film d’animation magnifique fait par Ofir David en suivant le lien :


Positivité et sommes de carrés

Catégorie d’évènement : Colloquium Date/heure : 4 février 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Olivier Benoist (École Normale Supérieure de Paris)

 
Benoist

Le 17ème problème de Hilbert, résolu en 1927 par Artin, affirme que tout polynôme réel qui ne prend que des valeurs positives est une somme de carrés. La positivité des sommes de carrés est donc la seule source d’inégalités polynomiales ! Je présenterai l’histoire de cette question, des développements récents, et des problèmes ouverts d’énoncés élémentaires.


Randonnée arithmétique

Catégorie d’évènement : Colloquium Date/heure : 21 janvier 2020 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Emmanuel Kowalski (ETH, Zurich)

 
Kowalski

Les objets arithmétiques d’apparence les plus simples, par exemple les
nombres entiers, ou des sommes finies de racines de l’unité, semblent
souvent avoir un comportement imprévisible, mais qui obéit
statistiquement à des règles précises. L’exposé présentera différents
exemples de tels phénomènes ainsi que des applications récentes.


1 2 3 4 5 6 7 8 9 10 11 12