Probabilities and Statistic seminar

Upcoming presentations

Workshop "Singular SPDEs, invariant measures and discrete models"

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 December 2024 - 6 December 2024 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Organisé par Yvain Bruned Résumé :

Planning, titres et résumés ici.


Perfect simulation of the invariant laws of Markovian load-balancing queueing networks

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carl Graham (Polytechnique) Résumé :

We define a wide class of Markovian load balancing queueing networks, including classic networks studied in the lively literature on the subject. Each network has identical single-server infinite-buffer queues and implements a load balancing policy to allocate each task at its arrival and possibly reallocate it at service completions. The purpose of the policy is to optimize server utilization under constraints such as limited information, real-time decision taking, and network topology. The queue length process is not necessarily exchangeable. The invariant law is in general not known even up to normalizing constant. We provide perfect simulation methods in view of Monte Carlo estimation of quantities of interest in equilibrium, for instance for performance evaluation. In this infinite multi-dimensional state space, we use an unusual preorder defining an order up to permutation of the coordinates, define a coupling in which networks in this class are dominated by the network with uniform routing, and implement dominated coupling from the past methods.

[The talk will be in French, but slides will be in English.]


Lucas Teyssier

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Teyssier (Vancouver) Résumé :

David Dereudre

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 9 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Dereudre (Université de Lille) Résumé :

Carlo Bellingeri

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 January 2025 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

(Exceptionnellement, le séminaire aura lieu à Metz et sera diffusé en visio en salle de conférence à Nancy.)


Thibault Lemoine

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 23 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thibault Lemoine (Collège de France) Résumé :

Benoît Nieto

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Nieto (École Polytechnique) Résumé :

Ed Cohen

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London)) Résumé :

Bruno Ebner

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :

Abonnement iCal

Past presentations

Systèmes de processus de renforcement en interaction

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 June 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Pierre-Yves Louis (IMB, Dijon) Résumé :

Les modèles d’urnes sont utilisés dans de nombreuses applications et sont un exemple fondamental de processus stochastiques de renforcement. En partant de ces modèles, nous nous intéresserons à plusieurs familles de systèmes (finis) de processus de renforcement. Différents résultats sur le comportement collectif en temps long seront présentés. La présence/absence de synchronisation sera discutée, ainsi que les vitesses de convergence en fonction de différents régimes de paramètres. Cet exposé se fonde sur des travaux en collaboration avec I. Crimaldi, P. Dai Pra, I. Minelli et M. Mirebrahimi.


Langevin processes in bounded-in-position domains: application to quasi-stationary distributions

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 27 May 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Mouad Ramil (CERMICS, Ecole des Ponts ParisTech) Résumé :

Quasi-stationary distributions can be seen as the first eigenvector associated with the generator of the stochastic differential equation at hand, on a domain with Dirichlet boundary conditions (which corresponds to absorbing boundary conditions at the level of the underlying stochastic processes). Many results on the quasi-stationary distribution hold for non degenerate stochastic dynamics, whose associated generator is elliptic. The case of degenerate dynamics is less clear. In this work, together with T. Lelièvre and J. Reygner (Ecole des Ponts, France) we generalize well-known results on the probabilistic representation of solutions to parabolic equations on bounded domains to the so-called kinetic Fokker-Planck equation on bounded domains in positions, with absorbing boundary conditions. Furthermore, a Harnack inequality, as well as a maximum principle, is provided for solutions to this kinetic Fokker-Planck equation, as well as the existence of a smooth transition density for the associated absorbed Langevin dynamics. The continuity of this transition density at the boundary is studied as well as the compactness, in various functional spaces, of the associated semigroup. This work is a cornerstone to prove the consistency of some algorithms used to simulate metastable trajectories of the Langevin dynamics, for example the Parallel Replica algorithm.


Principe de grande déviation pour les courants et le flot maximal en percolation de premier passage

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 20 May 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Barbara Dembin (LPSM, Paris) Résumé :

Considérons la percolation de premier passage dans le réseau renormalisé Z^d/n pour d>=2 : à chaque arête e, on associe une capacité aléatoire c(e)>=0 de telle sorte que la famille (c(e))_e soit indépendante et identiquement distribuée selon une loi G. On peut interpréter cette capacité comme un débit maximal, i.e., la quantité maximale d’eau pouvant traverser l’arête par unité de temps. Considérons un domaine borné et connecté Ω de R^d et deux ensembles disjoints du bord de Ω : un part lequel l’eau peut entrer (la source) et un part lequel l’eau peut sortir (le puits). Nous nous intéressons au flot maximal : la quantité maximale d’eau pouvant entrer dans Ω par unité de temps. Un courant est une fonction sur les arêtes qui décrit la façon dont l’eau circule dans Ω. Dans cet exposé, nous présenterons un principe de grande déviation pour les courants et nous en déduirons par un principe de contraction un principe de grande déviation pour le flot maximal dans Ω.
Travail en collaboration avec Marie Théret.


Strong laws for growth-fragmentation processes with bounded cell size

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 May 2021 10:45-11:45 Lieu : Teams Oratrice ou orateur : Alex Watson (University College London) Résumé :

A growth-fragmentation is a stochastic process representing cells with continuously growing mass, which experience sudden splitting events. Growth-fragmentations are used to model cell division and protein polymerisation in biophysics. It is interesting to ask whether these processes converge toward an equilibrium, in which the number of cells is growing exponentially and the distribution of cell sizes approaches some fixed asymptotic profile. In this work, we study a process in which the growth and splitting of an individual cell is largely independent of its mass, with the exception that the mass is bounded above, so it cannot exceed a given constant. We give precise conditions to ensure that, almost surely, the process exhibits this equilibrium behaviour, and express the asymptotic profile in terms of an underlying Lévy process.

This is joint work with Emma Horton (Inria Bordeaux).


Factorisations de genre fixé d'un grand cycle

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 8 April 2021 10:45-11:45 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Paul Thévenin (Uppsala University) Résumé :

Une factorisation d’une permutation est une façon d’écrire cette permutation comme un produit de transpositions. L’ensemble des factorisations du n-cycle (12…n), particulièrement étudié en raison notamment de ses liens avec la combinatoire algébrique, est en bijection avec un ensemble de cartes à n sommets, dont le genre est donné par le nombre de transpositions de la factorisation. J’exposerai un algorithme inspiré de cette bijection et permettant de générer une factorisation aléatoire uniforme du n-cycle dont la carte correspondante est de genre fixé.

Je montrerai également comment cet algorithme permet de décrire la limite, en un certain sens, d’une factorisation uniforme de genre donné.

Travail en collaboration avec Valentin Féray et Baptiste Louf.


Multilevel Picard approximations for high-dimensional semilinear parabolic partial differential equations

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 1 April 2021 10:45-11:45 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Thomas Kruse (Justus Liebig University, Giessen) Résumé :
We present new approximation methods for high-dimensional semilinear parabolic PDEs. A key idea of our methods is to combine multilevel approximations with Picard fixed-point approximations. We prove in the case of semilinear heat equations with Lipschitz continuous nonlinearities that the computational effort of one of the proposed methods grows polynomially both in the dimension and in the reciprocal of the required accuracy. We illustrate the efficiency of the approximation methods by means of numerical simulations. The talk is based on joint works with Weinan E, Martin HutzenthalerArnulf JentzenTuan Nguyen and Philippe Von Wurstemberger.

Mind2Mind: Transfer learning for GANs

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 March 2021 10:45-11:45 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Yaël Frégier Résumé :

In this talk, we will present a new approach to the problem of transfer learning for GANs. It allows training deep neural networks with limited computational resources in the specific context of generative models. We prove rigorously, within the framework of optimal transport, a theorem that ensures the convergence of the learning of the transferred Wasserstein GAN. It is joint work with Jean-Baptiste Gouray


Rebondissements de mouvements browniens asymétriques

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 25 March 2021 09:15-10:15 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Miguel Martinez Résumé :
Dans cet exposé nous présenterons des résultats concernant les “rebonds” de deux mouvements browniens asymétriques (ou ‘skew brownian motion’) l’un sur l’autre. Nous verrons que dans une échelle de temps adéquat, la distance entre les deux processus se trouve être solution d’une équation différentielle stochastique à sauts dirigée par le processus des excursions de l’un des deux mouvements, tandis que les rebonds eux-mêmes peuvent se décrire en faisant appel à la théorie des extensions markoviennes des processus auto-similaires. La fin de l’exposé sera consacrée à la présentation de certaines perspectives ouvertes par cette étude.

Nouveaux développements en statistique grâce à la méthode de Stein

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 March 2021 10:45-11:45 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Christophe Ley (Ghent University) Résumé :

La méthode de Stein est un outil bien connu en probabilités pour construire des bornes précises sur des distances probabilistes. Initialement proposée pour l’approximation gaussienne, elle a par la suite été étendue à bon nombre de lois comme la loi de Poisson, binomiale, exponentielle, variance Gamma, et bien d’autres. Ces dernières années, cette méthode probabiliste a aussi connu un réel succès en statistique et machine learning, et a permis des développements théoriques et computationnels assez spectaculaires. Dans cet exposé, je vais donner un aperçu sur ces développements, avec un focus particulier sur une nouvelle mesure de l’impact du choix de la prior distribution en statistique bayésienne.


Problèmes de ruine, équation de la chaleur sur un triangle, solutions extrémales et jeux à champs moyen

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 18 March 2021 09:15-10:15 Lieu : Salle de probabilités et statistique virtuelle Oratrice ou orateur : Nabil Kazi-Tani (ISFA, Université Lyon 1) Résumé :

Je donnerai dans cet exposé deux exemples de problèmes de contrôle stochastique consistant à optimiser un critère discontinu, dans lesquels d’une part, la fonction valeur peut être obtenue explicitement et d’autre part, le contrôle optimal est extrémal (contrôle bang-bang). Je considèrerai d’abord le problème consistant à minimiser une probabilité de ruine en temps fini pour des martingales browniennes. En calculant explicitement les probabilités de sorties d’un triangle rectangle par le mouvement brownien (en utilisant des résultats connus sur les processus de Bessel), il est possible de montrer que la fonction valeur du problème de contrôle est une solution régulière d’une EDP de la chaleur avec des conditions aux bords discontinues. J’expliquerai en quoi ce problème est utile en assurance, en biologie, ou encore en science politique. Dans un 2e temps, je montrerai comment obtenir des résultats similaires dans des problèmes de jeux différentiels à N joueurs, dont je prendrai une approximation de type champs moyen dans le régime où N est grand. Cet exposé s’appuie sur des travaux en collaboration avec Stefan Ankirchner (Jena), Christophette Blanchet-Scalliet (Lyon), Julian Wendt (Jena) et Chao Zhou (Hong Kong).


5 6 7 8 9 10 11 12 13 14 15 16