Upcoming presentations
An $\varepsilon$-regularity theorem for an optimal design problem with perimeter penalization
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.
Travail en collaboration avec Hannes Kern (TU Berlin).
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Past presentations
Un effet régularisant pour l'équation de Schrödinger fractionnaire et estimées d'observabilité
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 June 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nikolay Tzvetkov (ENS Lyon) Résumé :On va montrer comment on peut définir le carré du module de la solution de l’équation de Schrödinger fractionnaire sur le tore avec condition initiale dans un espace de Sobolev arbitrairement singulier. Ensuite on va montrer comment cela peut être utile dans des estimations d’observabilité.
Perturbations sur le bord, de petite taille, pour une équation elliptique
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Eric Bonnetier (Institut Fourier) Résumé :De nombreux travaux ont été consacrés à la dérivation d’approximations asymptotiques
des solutions d’une équation elliptique, lorsqu’on perturbe le milieu par des inhomogénéités
de petit volume. Les termes des développements asymptotiques des solutions contiennent
des informations sur la localisation, la forme et les propriétés physiques des inhomogénéités,
qui ont été exploitées avec bonheur dans le contexte des problèmes inverses d’identification
.
Dans cet exposé, nous présentons des résultats concernant le comportement des solutions
lorsque l’on perturbe la condition au bord sur un `petit’ ensemble $\omega_\e$. Nous caractérisons
le terme de premier ordre du développement asymptotique en fonction de la mesure pertinente de
la taille de la perturbation $\omega_\e$. Nous donnons des exemples explicites lorsque $\omega_\e$
est une boule surfacique dans $\R^d, d=2,3$.
Ce travail a été réalisé en collaboration avec Charles Dapogny et Michael Vogelius.
Ensemble Kalman Filters - from Data Assimilation to general Inverse Problems
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mark Asch (Université de Picardie) Résumé :In this talk, I will briefly recall the historical Kalman filter and its ensemble form. Then I will show how the latter has been successfully implemented for data assimilation, in particular in numerical weather forecasting. More recently, the Ensemble Kalman Filter has been proposed as a methodology for solving very general inverse problems in high-dimensional contexts. I will present the theory, show some simple applications and point out the numerous open problems that remain.
Anisotropic Sobolev inequalities with monomial weights
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Maria Rosaria Posteraro (Université de Naples) Résumé :Observabilité optimale en temps grand de l’équation de la chaleur et positionnement optimal de capteurs
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yannick Privat (IECL) Résumé :Il est bien connu que la reconstruction d’une donnée initiale associée à une équation parabolique à partir de mesures internes de sa solution pendant un temps T, sur un domaine $\omega$ appelé domaine d’observation équivaut à la question de l’observabilité, ou plus précisément à la positivité de ce qu’on appelle la constante d’observabilité associée à $\omega$. Cette constante dépend du domaine d’observation $\omega$ mais aussi de façon cruciale de l’horizon temporel T.
Dans cet exposé, nous nous intéressons au positionnement optimal de capteurs thermiques. Il est raisonnable de modéliser cette question apr la recherche des domaines extrémaux (lorsqu’ils existent) maximisant cette constante d’observabilité. Pour être physiquement pertinent, nous imposons une restriction sur la mesure du domaine observé.
Après avoir introduit une relaxation convexe du problème d’optimisation de la forme, nous déterminons le comportement asymptotique des maximiseurs lorsque T tend vers $+\infty$. En utilisant de façon cruciale un principe de la baignoire quantitatif, nous prouvons la forte convergence des maximiseurs vers la fonction caractéristique d’un ensemble mesurable que nous caractérisons précisément, et montrons en outre que cette convergence est exponentielle.
Il s’agit d’un travail en collaboration avec Idriss Mazari (univ. Paris Dauphine) et Emmanuel Trélat (Sorbonne univ.)
Existence and boundedness of solutions to singular anisotropic elliptic equations
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 April 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Florica Cirstea (Université de Sydney) Résumé :Inverse Regge Pole Problem on a warped ball (séminaire en visioconférence)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 April 2024 13:00-14:00 Lieu : L'exposé sera diffusé en salle de visioconférence de Nancy et également via ce lien : https://webvisio.univ-lorraine.fr/meeting/5132?secret=734f4e30-f8c5-4938-8469-848f0f54d65d Oratrice ou orateur : Jack Borthwick (Université PcGill) Résumé :
! Attention ! Séminaire en visioconférence et à un horaire inhabituel.
Approximation du flot de courbure moyenne des structures minces
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 April 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Chih-Kang Huang (Institut Jean Lamour) Résumé :Nous abordons l’approximation du flot de courbure moyenne des structures minces, pour lesquelles les méthodes classiques des champs de phase ne sont pas adaptées. Par structures minces, nous entendons soit des structures de codimension supérieure, typiquement des filaments, soit des surfaces non fermées et des surfaces non orientables.
Nous proposons une nouvelle approche qui consiste à introduire dans l’équation d’Allen-Cahn un terme de pénalisation localisé autour du squelette de l’ensemble en évolution. Cette approximation garantit une épaisseur minimale pendant l’évolution, prohibant ainsi les auto-intersections. L’efficacité numérique de notre approche est illustrée par des approximations du flot de courbure moyenne des filaments. Nous montrons son utilisation pour les approximations numériques aux problèmes de Steiner et de Plateau en dimension 3. Il s’agit d’un travail en collaboration avec Elie Bretin (INSA Lyon) et Simon Masnou (Lyon 1).
Stabilité en optimisation de forme sous contrainte de convexité
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 March 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jimmy Lamboley (Sorbonne Université) Résumé :On singular limits arising in mechanical models of tumour growth
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 March 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Noemi David (Université de Lyon) Résumé :The mathematical modelling of cancer has been increasingly applying fluid-dynamics concepts to describe the mechanical properties of tissue growth. The biomechanical pressure plays a central role in these models, both as the driving force of cell movement and as an inhibitor of cell proliferation. In this talk, I will present how it is possible to build a bridge between models that have different pressure-velocity or pressure-density relations. In particular, I will focus on the inviscid limit from a Brinkman model to a porous medium-type model, and the incompressible limit that links the latter to a Hele-Shaw free boundary problem with density constraint.