Upcoming presentations
An $\varepsilon$-regularity theorem for an optimal design problem with perimeter penalization
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.
Travail en collaboration avec Hannes Kern (TU Berlin).
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Past presentations
Stabilization of 1D systems of PDEs
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 October 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Amaury Hayat Résumé :As part of control theory, stabilization consists in finding a way to make stable a trajectory of a system on which one has some means of action. In this talk, we will discuss recent advances in stabilization of PDEs, starting with one of the most natural approaches for nonlinear systems, quadratic Lyapunov functions, to more complex approaches such as Fredholm backstepping. Backstepping consists in finding a control operator such that the PDE system can be invertibly mapped to a simpler PDE system for which stability is known. Surprisingly powerful, this approach offers the possibility to deal with very general classes of systems. We will review the origin of the method and present new results that resolve a question opened in 2017 and illustrate it on the rapid stabilization of the linearized water-wave equations. Finally, if time allows we will talk about a completely different subject: teaching mathematics to an AI and we will consider two questions, can we train an AI to predict the solution of a mathematical problem? can we train an AI to prove a statement?
A morphelastic model
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 June 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ulisse Stefanelli (University of Vienna) Résumé :I will present some recent work in collaboration with Elisa Davoli (TU Wien) and Katerina Nik (University of Vienna) on a three-dimensional quasistatic morpholelastic model. The mechanical response of the body and its growth are modeled by the interplay of hyperelastic energy minimization and growth dynamics. An existence result is obtained by regularization and time-discretization, also taking advantage of an exponential-update scheme. Then, we allow the growth dynamics to depend on an additional scalar field modeling nutrient concentration, and formulate an optimal control problem. Eventually, we tackle the existence of coupled morphoelastic and nutrient solutions, when the latter is allowed to diffuse and interact with the growing body.
Control of parameter dependent systems: how to compute greedy, ensemble or averaged controls?
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 June 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Lohéac (CRAN) Résumé :In this talk I will provide an overview on the problem of controllability of parameter dependent systems. I will explore different control notions successfully developed through the last decade.
The aim of the control function is to steer the system to a state satisfying some properties prescribed either at some time instant T>0 or during a given time interval. These properties may be separated with respect to parameter values and can refer just to a single system itself (e.g. greedy control), or may consider solutions corresponding to the whole parameter range (e.g. ensemble control, averaged control). In the latter case control functions are designed as parameter invariant, implying a same control is to be applied to the system independently of a particular realization of the parameter, while in the first case controls vary along with the parameter. Beside the positive theoretical results, for each notion we provide a computational algorithm.
A varifold perspective on discrete surfaces
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 May 2022 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Blanche Buet (Laboratoire de mathématiques d'Orsay) Résumé :Remarques sur le Problème de Cauchy pour le laplacien et Contrôle lagrangien de l'équation d’Euler
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 May 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Otared Kavian (Université de Versailles) Résumé :On parabolic problems with superlinear gradient terms
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 May 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Martina Magliocca (Ecole normale supérieure Paris-Saclay) Résumé :Inégalité de Faber-Krahn inverse pour le laplacien tronqué
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Enea Parini (Aix-Marseille Université) Résumé :Dans cet exposé on va s’intéresser à une inégalité de Faber-Krahn inverse pour la valeur propre fondamentale $\mu_1(\Omega)$ de l’opérateur complètement nonlinéaire
\[ \mathcal{P}_N^+ u := \lambda_N(D^2 u), \]
où $\Omega \subset \mathbb{R}^N$ est un ouvert borné et convexe, et $\lambda_N(D^2 u)$ est la plus grande valeur propre de la matrice hessienne de $u$. On verra que le résultat découle de l’inégalité isopérimétrique
\[ \mu_1(\Omega) \leq \frac{\pi^2}{\text{diam}(\Omega)^2}. \]
De plus, on va discuter de la minimisation de $\mu_1$ sous différents types de contraintes. Les résultats ont été obtenus en collaboration avec Julio D. Rossi et Ariel Salort (Buenos Aires).
Adaptation d'un pathogène à plusieurs hôtes: The third man
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matthieu Alfaro (Université de Rouen Normandie) Résumé :On considère un système de réaction-diffusion non locale décrivant l’adaptation d’un pathogène à $H$ hôtes, chacun étant associé à un différent optimum phénotypique dans $\mathbb R^n$. Le comportement en temps grand (persistance vs extinction) du problème de Cauchy associé est donné par le signe d’une valeur propre principale. Une grande partie de l’étude se concentre sur le cas $H=3$ (qui est très riche!). On compare notamment avec le cas $H=2$ et montre que la présence d’un troisième hôte peut favoriser ou entraver l’adaptation…
La méthode de Lyapunov pour des solutions de systèmes de Réaction-Diffusion
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Said Benachour (IECL) Résumé :Problèmes de Schrödinger dynamiques: Gamma-convergence et convexité
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Léonard Monsaingeon (GFMUL Lisbon) Résumé :Le problème de Schrödinger (~1930) consiste à inférer la trajectoire d’un système de particules Browniennes, étant données les observations de ses distributions statistiques en un temps initial et terminal. Récemment des liens profonds avec le Transport Optimal ont été mis à jour, permettant de voir le problème de Schrödinger comme une version bruitée du problème déterministe du transport optimal classique (géodésiques dans l’espace de Wasserstein des mesures de probabilités). Le niveau de bruit est déterminé par un paramètre de température $\varepsilon>0$, et l’interpolation temporelle est pilotée énergétiquement parlant par l’entropie de Boltzmann. Dans la limite de petit bruit, il est bien connu que ce problème bruité Gamma-converge vers sa contrepartie déterministe, ce qui est remarquablement utile numériquement. Dans cet exposé je discuterai une extension naturelle à des problèmes de Schrödinger géométriques dans des espaces métriques abstraits. On peut établir dans ce cadre un résultat de Gamma-convergence très général, et je montrerai comment la preuve mène également à des nouveaux résultats de convexité.