Upcoming presentations
Roberto Capistrano-Filho (Federal University of Pernambuco, Brasil)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 October 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Roberto Capistrano-Filho (Federal University of Pernambuco, Brasil) Résumé :Existence et propriétés de certaines équations du second ordre elliptiques, complètement non linéaires
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 October 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Cheikhou Oumar NDAW Résumé :Past presentations
Limiting behavior of minimizing p-harmonic maps in 3d as p goes to 2 with finite fundamental group.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bohdan Bulanyi (Université de Bologne) Résumé :The presentation will focus on some new results concerning the limiting behavior of minimizing
Stabilisation des ondes non-linéaires : cas non uniformes
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romain Joly (Institut Fourier) Résumé :Dans cet exposé, nous discuterons de la convergence vers 0 des solutions de l’équation des ondes amorties non-linéaire. Dans le cas où l’amortissement agit dans une zone vérifiant la “condition de contrôle géométrique”, les solutions de l’équation linéaire tendent uniformément et exponentiellement vite vers 0. Il existe de nombreux travaux montrant que cette convergence se transmet presque toujours à l’équation avec une non-linéarité. Quand la “condition de contrôle géométrique” n’est pas vérifiée, la décroissance du semigroupe linéaire n’est plus uniforme. Plusieurs géométries ont été étudiées, donnant lieu à différentes vitesses de décroissance. Le but de l’exposé sera de discuter de ces situations pour l’équation non-linéaire, ce qui reste un domaine très ouvert. Il s’agit d’un travail en collaboration avec Camille Laurent.
Problème de résonances inverse sur un cylindre hyperbolique infini perturbé.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Valentin Arrigoni (Université de Franche-Comté) Résumé :Nous étudions un problème de résonance inverse sur un cylindre hyperbolique infini perturbé radialement et de manière compacte. En utilisant les symétries de ce type de géométrie, nous sommes amenés à étudier une équation de Schrödinger stationnaire sur la droite réelle avec un potentiel V, qui est la somme d’un potentiel de Pöschl-Teller et d’une perturbation que nous considérons intégrable et à support compact. Nous définissons les résonances comme les pôles des coefficients de réflexion avec une partie imaginaire négative. Nous prouvons que, sous certaines hypothèses sur le support de la perturbation compacte, nous sommes capables de résoudre la question de l’unicité dans le problème de résonance inverse. Nous donnons également des asymptotiques des résonances et montrons qu’elles sont asymptotiquement localisées sur deux branches logarithmiques et, selon la localisation du support de q, parfois aussi sur des lignes parallèles à l’axe imaginaire.
Invariant measures for mKdV and KdV on the line
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 October 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Justin Forlano (University of Edinburgh) Résumé :Étude d’un problème elliptique fractionnaire : existence, multiplicité et comportement asymptotique
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 October 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Amira BATAHRI (Université de Tlemcen) Résumé :Observabilité de l’équation de la chaleur à partir d’ensembles « petits ».
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 October 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Kévin Le Balc'h (INRIA Paris) Résumé :On s’intéresse à la notion d’observabilité pour l’équation de la chaleur posée sur un domaine
Structure-preserving low-regularity integrators for dispersive nonlinear equations
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 September 2024 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Georg Maierhofer (Oxford) Résumé :Attention : le séminaire aura lieu en salle Döblin.
Abstract: Dispersive nonlinear partial differential equations can be used to describe a range of physical systems, from water waves to spin states in ferromagnetism. The numerical approximation of solutions with limited differentiability (low-regularity) is crucial for simulating fascinating phenomena arising in these systems including emerging structures in random wave fields and dynamics of domain wall states, but it poses a significant challenge to classical algorithms. Recent years have seen the development of tailored low-regularity integrators to address this challenge. Inherited from their description of physicals systems many such dispersive nonlinear equations possess a rich geometric structure, such as a Hamiltonian formulation and conservation laws. To ensure that numerical schemes lead to meaningful results, it is vital to preserve this structure in numerical approximations. This, however, results in an interesting dichotomy: the rich theory of existent structure-preserving algorithms is typically limited to classical integrators that cannot reliably treat low-regularity phenomena, while most prior designs of low-regularity integrators break geometric structure in the equation. In this talk, we will outline recent advances incorporating structure-preserving properties into low-regularity integrators. Starting from simple discussions on the nonlinear Schrödinger and the Korteweg–de Vries equation we will discuss the construction of such schemes for a general class of dispersive equations before demonstrating an application to the simulation of low-regularity vortex filaments. This is joint work with Yvonne Alama Bronsard, Valeria Banica, Yvain Bruned and Katharina Schratz.
Mesures de Gibbs en environnement singulier
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 June 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Eulry (ENS Rennes) Résumé :On s’intéressera dans cet exposé à l’étude d’objets présentant un caractère singulier et des opérations mal posées, l’objet central étant l’opérateur d’Anderson, un opérateur de Schrödinger où le potentiel est un bruit blanc espace. Après avoir discuté de sa construction et des propriétés qui en découlent, on établira un contrôle de sa fonction de Green de l’opérateur afin de comprendre sa singularité.
Dans un deuxième temps, on s’intéressera à des dynamiques dirigées par cet opérateur et particulièrement à la construction de mesures invariantes dans ce cadre. On s’attardera sur la définition de la mesure gaussienne associée et son utilisation pour comprendre le modèle
Les résultat présentés sont basés sur des travaux en collaboration avec Antoine Mouzard et Tristan Robert.
Un effet régularisant pour l'équation de Schrödinger fractionnaire et estimées d'observabilité
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 June 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nikolay Tzvetkov (ENS Lyon) Résumé :On va montrer comment on peut définir le carré du module de la solution de l’équation de Schrödinger fractionnaire sur le tore avec condition initiale dans un espace de Sobolev arbitrairement singulier. Ensuite on va montrer comment cela peut être utile dans des estimations d’observabilité.
Perturbations sur le bord, de petite taille, pour une équation elliptique
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Eric Bonnetier (Institut Fourier) Résumé :De nombreux travaux ont été consacrés à la dérivation d’approximations asymptotiques
des solutions d’une équation elliptique, lorsqu’on perturbe le milieu par des inhomogénéités
de petit volume. Les termes des développements asymptotiques des solutions contiennent
des informations sur la localisation, la forme et les propriétés physiques des inhomogénéités,
qui ont été exploitées avec bonheur dans le contexte des problèmes inverses d’identification
.
Dans cet exposé, nous présentons des résultats concernant le comportement des solutions
lorsque l’on perturbe la condition au bord sur un `petit’ ensemble
le terme de premier ordre du développement asymptotique en fonction de la mesure pertinente de
la taille de la perturbation
est une boule surfacique dans
Ce travail a été réalisé en collaboration avec Charles Dapogny et Michael Vogelius.