Upcoming presentations
Groupe de travail : Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin's law through the vertical displacements
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 May 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Aissa Guesmia (IECL) Résumé :The main objective of this work is to study the stability of a linear one-dimensional thermoelastic Bresse system in a bounded domain, where the coupling is given through the first component of the Bresse model with the heat conduction of Gurtin-Pipkin type. Two kinds of coupling are considered; the first coupling is of order one with respect to space variable, and the second one is of order zero. We state the well-posedness and show the polynomial and strong stability of the systems for regular and weak solutions, respectively, where the polynomial decay rates depend on the smoothness of the initial data. Moreover, in case of coupling of order one, we prove the equivalence between the exponential stability and some new conditions on the parameters of the system. However, when the coupling is of order zero, we prove the non-exponential stability independently of the parameters of the system. Applications to the corresponding particular Timoshenko models are also given, where we prove that both couplings lead to the exponential stability if and only if some conditions on the parameters of the systems are satisfied, and both couplings guarantee the polynomial and strong stability for regular and weak solutions, respectively, independently of the parameters of the systems. The proof of the well-posedness result is based on the semigroups theory, whereas a combination of the energy method and the frequency domain approach is used for the proof of the stability results.
For the details, see the following paper:
A. Guesmia, Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin’s law through the vertical displacements, SeMa J., (2023), 1-49.
Groupe de travail : auchy systems of type Rao-Nakra sandwich beam with frictional dampings or infinite memories: some $L^q (R)$-norm polynomial stability estimates ($q\in[1,+\infty]$)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 June 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Aissa Guesmia (IECL) Résumé :The objective of this work is to study the stability of two systems of type Rao-Nakra sandwich beam in the whole line $R$ with a frictional damping or an infinite memory acting on the Euler-Bernoulli equation. When the speeds of propagation of the two wave equations are equal, we show that the solutions do not converge to zero when time goes to infinity. In the reverse situation, we prove some $L^2 (R)$-norm and $L^1 (R)$-norm decay estimates of solutions and theirs higher order derivatives with respect to the space variable. Thanks to interpolation inequalities and Carlson inequality, these $L^2 (R)$-norm and $L^1 (R)$-norm decay estimates lead to similar ones in the $L^q (R)$-norm, for any $q\in [1,+\infty]$. In our both $L^2 (R)$-norm and $L^1 (R)$-norm decay estimates, we specify the decay rates in terms of the regularity of the initial data and the nature of the control. Applications to some Cauchy Timoshenko type systems will be also given. The proof is based on the energy method combined with the Fourier analysis (by using the transformation in the Fourier space and well chosen multipliers).
A part of these results was obtained in collaboration with Salim Messaoudi (University of Sharjah, UAE).
For the details, see the following papers:
A. Guesmia, Some $L^q (R)$-norm decay estimates ($q\in[1,+\infty]$) for two Cauchy systems of type Rao-Nakra sandwich beam with a frictional damping or an infinite memory, J. Appl. Anal. Comp., 12 (2022), 2511-2540.
A. Guesmia, On the stability of a linear Cauchy Rao-Nakra sandwich beam under frictional dampings, Taiwanese J. Math., 27 (2023), 799-811.
A. Guesmia and S. Messaoudi, Some $L^2 (R)$-norm and $L^1 (R)$-norm decay estimates for Cauchy Timoshenko type systems with a frictional damping or an infinite memory, J. Math. Anal. Appl., 527 (2023), 127385.
Past presentations
Séminaire : Théorème de Levinson topologique: seuils plongés et discontinuités !
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Serge Richard (Université de Nagoya, Japon) Résumé :Durant ce séminaire nous étudierons la théorie de la diffusion pour une famille d’opérateurs de Schrödinger. Ces opérateurs possèdent des spectres présentant un changement de multiplicité et donc des seuils plongés. Certains opérateurs possèdent également des résonances aux seuils. Nous construirons alors une ${\rm C}^*-$algèbre à laquelle appartient les opérateurs d’onde. L’étude du quotient de cette algèbre par l’idéal des opérateurs compacts mène directement à l’existence de théorèmes d’indice en théorie de la diffusion. Ces théorèmes peuvent alors s’interpréter comme des théorèmes de Levinson en présence de seuils plongés et de discontinuités de la matrice de diffusion. La dépendance de ces résultats en fonction de certains paramètres sera également discutée. Aucun prérequis ${\rm C}^*-$algébrique n’est nécessaire pour cette présentation.
Séminaire : Inégalité de Lewy-Stampacchia pour une classe de problèmes paraboliques pseudo-monotones
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Olivier Guibé (Université de Rouen) Résumé :Dans cet exposé nous commencerons par expliquer le cas linéaire et comment la méthode de pénalisation utilisée notamment par Donati en 1982 permet de montrer l’existence d’une solution à un problème d’obstacle dans le cadre variationnel usuel et l’inégalité de Lewy-Stampacchia associée. Nous aborderons ensuite le cas d’équations paraboliques quasi-linéaires et les difficultés supplémentaires liées à la perte de la monotonie de l’opérateur. Avec une modification ad-hoc de l’opérateur, un résultat de densité et un lemme d’intégration par parties à la Mignot-Bamberger-Alt-Luckhaus nous démontrerons une extension des résultats de Donati pour une classe plus générale d’équations et toujours dans le cadre variationnel.
Enfin, si le temps le permet, nous discuterons de la généralisation aux cas de donnée dans $L^1$, hors du cadre variationnel, avec l’utilisation de la notion de solutions entropiques pour le problème d’obstacle et de la notion de solutions renormalisées pour l’inégalité de Lewy-Stampacchia associée.
Séminaire : Null internal controllability for a Kirchhoff-Love plate with a comb-like shaped structure
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Gaudiello (Università degli Studi della Campania ”Luigi Vanvitelli”, Italy) Résumé :In this talk I present a joint paper with Umberto De Maio (Università degli Studi di Napoli “Federico II”, Italy) and Catalin Lefter (Al.I.Cuza University and Octav Mayer Institute of Mathematics, Iasi, Romania).
This paper is devoted to studying the null internal controllability of a Kirchhoff-Love thin plate with a middle surface having a comb-like shaped structure with a large number of thin fingers described by a small positive parameter $\varepsilon$. It is often impossible to directly approach such a problem numerically, due to the large number of thin fingers. So an asymptotic analysis is needed. In this paper, we first prove that the problem is null controllable at each level $\varepsilon$. We then prove that the sequence of the respective controls with minimal $L^2$ norm converges, as $\varepsilon$ vanishes, to a limit control function ensuring the optimal null controllability of a degenerate limit problem set in a domain without fingers.
Pas de séminaire : Journée en l'honneur de Georges Rhin
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 7 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Résumé :La journée en l’honneur de Georges Rhin aura lieu le vendredi 7 mars. Plus de détails ici.
Séminaire : Effective Models for Open Quantum Systems by Scaling Limits
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 February 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Michele Fantechi (IECL) Résumé :Our work focuses on the derivation of effective models for a quantum system interacting with a large reservoir of particles through a mean-field scaling. Since this scaling is semiclassical in nature, we also employ techniques from the semiclassical analysis of bosonic fields. Furthermore, we examine key properties of open quantum systems, such as decoherence and non-Markovianity. While a complete analysis of the system-environment ensemble is feasible for simple models, an effective description is a crucial step in the analysis of systems interacting with large environments.
Groupe de Travail : Dynamique Hamiltonienne avec sources multidimensionnelles
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 February 2025 10:45-12:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Tillmann Wurzbacher Résumé :Attention : horaires inhabituels, le groupe de travail aura lieu de 10h45 à 12h15 (une séance d’une heure et demie) et sera précédé d’une pause café-gâteau de 10h15 à 10h45
Références et résumé peuvent se trouver ici : https://arxiv.org/abs/2410.21068
Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (2/2)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 24 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :Séminaire : Existence results and exponential decay rate for a thermoelastic système without internal damping and Wentzell boundary conditions
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Hicham Kasri (USTHB, Faculté de Mathématiques) Résumé :We establish the exponential decay of the solutions of the thermoelasticity system subject to full boundary damping. The considered problem is associated with several dynamic boundary conditions, also referred to as Wentzell or Ventcel boundary conditions in the literature. The analysis is based on the determination of crucial identity and some further analysis. This is established through the multiplier technique and with some geometric assumptions.
This work was partially supported by a grant from the IMU-CDC and Simons Foundation.
Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (1/2)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :Séminaire : Améliorer la stabilité et la précision des schémas Galerkin Discontinu à l’aide de réseaux de neurones
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 November 2024 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Laurent Navoret (Université de Strasbourg) Résumé :La méthode Galerkin Discontinu permet d’approcher numériquement de façon très précise les solutions régulières des équations hyperboliques. Il est par contre plus délicat d’approcher des solutions discontinues ou des solutions perturbations autour de solutions stationnaires (pour des équations avec termes sources).
En effet, dans le premier cas, les oscillations de Gibbs générées aux discontinuités peuvent déstabiliser le schéma, tandis que dans le deuxième cas, l’erreur produite sur la solution stationnaire rend difficile l’étude des dynamiques perturbatives. Nous verrons dans cet exposé comment les réseaux de neurones peuvent être utilisés pour construire des viscosités artificielles qui stabilisent les schémas numériques et comment elles permettent de construire des bases Galerkin Discontinu adaptées aux solutions stationnaires du problème.