PDE and applications seminar | Metz

Upcoming presentations

Séminaire: Optimal stabilization rate for the wave equation with hyperbolic boundary condition

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 November 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Hugo Parada (IECL) Résumé :

We consider linear waves on a bounded domain where one part of the boundary is governed by a coupled lower-dimensional wave equation (i.e., dynamic Ventcel/Wentzell boundary condition) and is subject to viscous damping. The other (possibly empty) part is left at rest. When the dynamic boundary geometrically controls the domain, we show that the total energy of classical solutions decays like 1/t. The proof relies on an analysis of high-frequency quasimodes, suitable boundary estimates obtained in different microlocal regimes, and a special decoupling argument. Optimality is assessed via an appropriate quasimode construction.

Ongoing work with Nicolas Vanspranghe (Inria team DISCO, L2S –CentraleSupélec).


Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 November 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Matteo d'Achille (IECL) Résumé :

Résumé à venir


Séminaire: Propagation of coherent states in Quantum Field Theory

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 28 November 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Julien Malartre (Sobonne Paris Nord) Résumé :

Bohr’s correspondence principle asserts that the predictions of classical and quantum mechanics coincide in the limit of large quantum numbers. This connection becomes especially striking when one studies Schrödinger-type equations for initial data minimising the uncertainty principle, known as “gaussian coherent states”, in the semiclassical limit. More precisely, in the context of quantum mechanics, one can derive a complete asymptotic expansion in the semiclassical parameter for solutions of such equations. The aim of this talk is to explain how to obtain a similar result in the framework of Quantum Field Theory for a certain class on analytic interactions, with a particular stress on spatially cutoff $P(\phi)_2$ interactions.


Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel'nyk Résumé :

Résume à venir


Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :

Résumé à venir


Abonnement iCal

Past presentations

Groupe de travail : Factorisation orthogonale d'une matrice par blocs sous une forme échelonnée spéciale, et applications

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 January 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Baptiste Bellet Résumé :

Dans cet exposé, on présente une factorisation orthogonale d’une matrice sous une certaine forme échelonnée, avec un algorithme itératif associé. Cette factorisation, dédiée aux matrices par blocs, réalise un compromis entre la méthode du pivot de Gauss qui échelonne, et la décomposition en valeurs singulières qui diagonalise par transformations orthogonales. On montrera des applications en interpolation (publiées récemment avec J.-P. Croisille et M. Brachet), ainsi que des applications en optimisation multi-critère (si le temps le permet).


Séminaire : Le système de Vlasov-Navier-Stokes avec absorption : pénalisation visqueuse ?

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 January 2023 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Ayman Moussa Résumé :

Le système de Vlasov-Navier-Stokes est un couplage fluide/cinétique décrivant l’évolution d’un aérosol au sein d’un fluide. Dans le contexte de l’aérosolthérapie, l’absorption est la condition aux bords la plus adéquate pour la phase dispersée, en raison de la présence de mucus sur les voies aériennes pulmonaires. En gardant ce cadre applicatif à l’esprit, on s’interrogera sur la possibilité de récupérer cette condition au bord par l’étude du même système dans tout l’espace, dans une limite (localisée) de grande viscosité, en utilisant la théorie des traces renormalisées de Boyer-Mischler pour les équations de transport.


Groupe de travail : Interpolation et approximation sur la grille "Cubed Sphere" équiangulaire

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 December 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jean-Pierre Croisille Résumé :

L’interpolation et l’approximation de fonctions définies sur la sphère sont des questions classiques en analyse harmonique et en analyse numérique.
Elles interviennent de façon essentielle dans de nombreux domaines en physique et en chimie: climatologie sur la sphère terrestre, chimie quantique, neutronique, analyse des données sur la sphère, etc.
On présente ici un algorithme de calcul en harmoniques sphériques associé à une grille sphérique particulière, la “Cubed Sphere” équiangulaire.
Différentes applications seront également présentées, dont des formules de quadrature sphériques.

Il s’agit d’un travail avec Jean-Baptiste Bellet et Matthieu Brachet.


Séminaire : Le système de Vlasov-Navier-Stokes avec absorption : pénalisation visqueuse ? (reporté au 6 janvier 2023)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 December 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Ayman Moussa Résumé :

Le système de Vlasov-Navier-Stokes est un couplage fluide/cinétique décrivant l’évolution d’un aérosol au sein d’un fluide. Dans le contexte de l’aérosolthérapie, l’absorption est la condition aux bords la plus adéquate pour la phase dispersée, en raison de la présence de mucus sur les voies aériennes pulmonaires. En gardant ce cadre applicatif à l’esprit, on s’interrogera sur la possibilité de récupérer cette condition au bord par l’étude du même système dans tout l’espace, dans une limite (localisée) de grande viscosité, en utilisant la théorie des traces renormalisées de Boyer-Mischler pour les équations de transport.


Séminaire : Fourth-order problems driven by Leray-Lions type operators

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 25 November 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Maria-Magdalena Boureanu Résumé :

We are discussing the weak solvability of the fourth-order elliptic problems with variable exponents. When dealing with variable exponent problems, we can cover situations that cannot occur when treating constant exponent problems. Here we consider nonhomogeneous differential operators that extend the p(x)-biharmonic operators and we work on a class of general domains that includes both smooth and non-smooth domains.


Séminaire : Stabilization of wave-wave transmission problem with generalized acoustic boundary conditions

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 October 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Ali Wehbe (Université libanaise de Beyrouth, Liban) Résumé :

We investigate the energy decay of hyperbolic system of wave-wave with generalized acoustic boundary conditions in N-dimensional space, with the equations being coupled through boundary connection. First, by spectrum approach combining with a general criteria of Arendt-Batty, we prove that our model is strongly stable. Then, after proving that this system lacks the exponential stability, we establish different type of polynomial energy decay rates provided that the coefficients of the acoustic boundary conditions satisfy some assumptions. Further, we present some appropriate examples and show that our assumptions have been set correctly. Finally, we prove that the obtained energy decay rate is optimal in particular case.


Séminaire : Pénalisation des équations stationnaires de Navier-Stokes et optimisation topologique

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 October 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Cornel Marius MUREA (Université de Haute Alsace) Résumé :

This is a joint work with Dan Tiba (Institute of Mathematics, Romanian Academy, dan.tiba@imar.ro).
We study the penalized steady Navier-Stokes with Neumann boundary conditions system in a holdall domain, its approximation properties (with error estimates) and the uniqueness of the solution that is obtained in a non standard manner. Numerical tests are presented.


Séminaire : Guided waves in perturbed periodic thin domains with honeycomb symmetry

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 7 October 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Berangère Delourme (Sorbonne Paris Nord) Résumé :

We consider the wave propagation in a periodic structure made of a honeycomb arrangement of thin tubes. We prove the presence of Dirac points (in the dispersion surfaces of the associated operator). In addition, cutting the structure in the Zig Zag direction creates guides modes. Those results are proved by asymtptotic analysis: as the width of the tubes goes to zeros the domain tends to a graph (where explicite computations can be done). This is a joint work with Sonia Fliss (POEMS, Inria-ENSTA-CNRS).


Séminaire : Plongements des surfaces à la courbure distributionnelle non-negative

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 June 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Reza Pakzad Résumé :

On présente d’abord les notions de base et quelques résultats connus sur les plongements isométriques de régularité faible des variétés riemanniennes dans les espaces euclidiennes en basse dimension, sur leurs deux versants de flexibilité (h-principe) et rigidité, dont quelques résultats récents. En particulier, on note que Borisov, et le suivant, Conti-De Lellis et Székelyhidi, ont démontré la convexité de l’image d’un tel plongement dans ${\mathbb R}^3$ d’une surface sans bord si sa métrique est régulière de classe $C^{2,\beta}$, la courbure est positive, et le plongement est de classe $C^{1,\alpha}$ pour $\alpha>2/3$. On discute la généralisation de ce résultat au cas où la métrique est seulement de classe $C^{1,\alpha}$ et la courbure au sens distributionnel est seulement non-négative. Pour établir cette généralisation, une nouvelle approche moyennant l’étude de l’équation de Monge-Ampère au sens très faible devient nécessaire.


Séminaire : Contrôle de l'équation de la chaleur par des formes et phénomène bang-bang en dimension infinie

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 3 June 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Christophe Zhang Résumé :

On s’intéresse à un problème de contrôle approché de l’équation de la chaleur par des “formes” : à l’aide d’un terme source donné par la fonction caractéristique d’un ensemble (variable dans le temps, de mesure uniformément bornée), on cherche à emmener la solution près d’un état final donné.

Ces contrôles très particuliers peuvent être vus comme des points extrémaux d’un certain ensemble convexe : or beaucoup de problèmes de contrôle optimal (et d’optimisation en général) ont pour minimiseurs (ou maximiseurs) des points extrémaux. Pour trouver le “bon” problème d’optimisation, on combine la dualité de Fenchel-Rockafellar, qui associe à un problème d’optimisation (dit primal) un problème dit dual, et le principe “de la baignoire”, qui concerne la maximisation sous contraintes d’un produit scalaire. Les contrôles optimaux associés à ce “bon” problème ont alors de bonnes chances d’être des formes, et de répondre ainsi à la question initiale.

La méthode de preuve permet d’étudier plus généralement la question du contrôle d’EDP avec des contraintes sur le contrainte, notamment le phénomène dit “bang-bang” : en dimension finie, il a été souvent observé que les contrôles optimaux (notamment les contrôles en temps minimal) saturent les contraintes qui leur sont imposées, et ont donc une forme plus simple (par exemple, une fonction constante par morceaux en temps). Le phénomène apparaît également en dimension infinie et nous verrons comment l’approche développée pour l’équation de la chaleur permet de l’étudier.


1 2 3 4 5 6 7 8 9 10 11 12