Upcoming presentations
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 June 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Humbert Résumé :Séminaire Commun - Viet Cuong Pham
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 July 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :Past presentations
Séminaire commun de Géométrie - REPORTE
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 June 2022 14:00-16:00 Lieu : Oratrice ou orateur : Olga Romaskevich Résumé :Séminaire reporté en 2022-2023. Date précisée ultérieurement.
Laplaciens de Witten : petites valeurs propres et cohomologie persistente (d’après des travaux en collaboration avec Francis Nier et Claude Viterbo)
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 May 2022 15:00-16:00 Lieu : Salle Döblin Oratrice ou orateur : Dorian Le Peutrec Résumé :Séminaire commun de Géométrie - Construction de surfaces minimales : approche variationnelle
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 May 2022 14:00-16:00 Lieu : Oratrice ou orateur : Laurent Mazet Résumé :Comme tous les “Séminaires communs de géométrie”, cet exposé est constitué de deux parties, la première de 14h à 14h45 pour un large public, la seconde de 15h15 à 16h pour un public plus intéressé. Entre les deux, une pause “thé-gâteaux” est offerte par l’équipe de géométrie
Première partie : Construction de surfaces minimales : approche variationnelle.
Résumé : Après avoir expliqué ce que sont les surfaces minimales, je présenterai quelques éléments de l’approche variationnelle qui peut être utilisée pour en construire.
Partie spécialisée : Rigidité des variétés riemanniennes contenant un équateur
résumé : Si une métrique sur la sphère S^2 à courbure comprise entre 0 et 1 possède une géodésique de longueur 2\pi, alors la courbure est constante égale à 1. Ce résultat de rigidité est dû à Calabi. En dimension 3 et sous les mêmes hypothèses de courbure sectionnelle, l’existence d’une sphère minimale d’aire 4\pi rigidifie aussi la métrique. Ce résultat a été obtenu dans un travail précédent avec H. Rosenberg. Dans cet exposé je présenterai comment ce travail peut être généralisé en codimension supérieure. Je donnerai aussi comme conséquence un théorème de rigidité pour le “width” de Simon-Smith.
Variétés de Robinson et connexions adaptées
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 25 April 2022 15:30-16:30 Lieu : Salle Döblin Oratrice ou orateur : Robert Petit Résumé :Les variétés de Robinson sont des variétés pseudoriemanniennes que l’on peut réaliser comme fibrés en droites (ou cercles) au dessus de variétés CR. Ces variétés sont présentes dans l’étude des solutions exactes de la relativité générale et plus précisément dans les métriques de type trou noir (Kerr, Taub-Nut). Après avoir présenté ces variétés et donné quelques exemples, nous introduirons dans cet exposé une connexion métrique (différente de la connexion de Levi-Civita) adaptée à l’étude de la géométrie de ces variétés.
Vacances
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 18 April 2022 15:30-16:30 Lieu : Oratrice ou orateur : Résumé :16
Vacances
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 11 April 2022 15:30-16:30 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de Géométrie - Problèmes extrémaux en géométrie hyperbolique
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 April 2022 14:00-16:00 Lieu : Oratrice ou orateur : Bram Petri Résumé :Je parlerai d’un projet en commun avec Maxime Fortier Bourque sur des problèmes extrémaux en géométrie hyperbolique. Les problèmes qui nous intéressent sont des analogues hyperboliques de problèmes classiques en géométrie euclidienne, comme le problème de la densité maximale des empilements de sphères et le problème du nombre de contact. L’objectif de l’exposé sera d’expliquer comment on peut utiliser la formule de trace de Selberg – une formule qui relie les longueurs des géodésiques sur une variété hyperbolique au spectre du Laplacien de cette variété – pour attaquer ces problèmes.
%%%%%%%%%%%%%%%%%%%%%%
Comme chaque “séminaire commun de géométrie”, une première partie de 14h à 14h45 sera un exposé d’introduction au sujet de type colloquium, suivi d’une pause thé-gateaux de 14h45 à 15h15 et de la suite de l’exposé de 15h15 à 16h.
Construction de représentations milnoriennes
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 28 March 2022 15:30-16:30 Lieu : Oratrice ou orateur : Ilia Smilga Résumé :En 1977, Milnor a formulé la conjecture suivante : tout groupe discret de transformations affines agissant proprement sur l’espace affine est virtuellement résoluble. On sait maintenant que cet énoncé est faux ; l’objectif est à présent de mieux cerner les contre-exemples à cette conjecture. Il y a deux ans, j’ai présenté au séminaire de Géométrie Différentielle une méthode permettant de construire un très grand nombre de tels contre-exemples.
Cette fois-ci, d’une part, je vais au contraire me concentrer sur les cas particuliers dans lesquelles la conjecture de Milnor est vérifiée. Je vais expliquer dans quels cas je sais la démontrer, et quels sont les obstacles à surmonter pour couvrir les cas restants.
Je vais également évoquer les possibles critères de propreté de l’action d’un groupe discret affine fixé.
Comptage et équidistribution de tores plats
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 14 March 2022 15:30-16:30 Lieu : Oratrice ou orateur : Thi Dang Nguyen Résumé :On se place dans l’espace des chambres de Weyl d’un espace symétrique de rang supérieur, ce qui correspond dans le cas d’une surface hyperbolique à son fibré unitaire tangent. Dans le cas compact ainsi que pour les orbivariétés qui sont des revêtements finis de SL(d,ZZ)\SL(d,IR), l’espace des chambres de Weyl contient des tores plats. Cela correspond, dans le cas des surfaces
hyperboliques aux orbites fermées du flot géodésique. Je vais vous présenter un résultat d’équidistribution et de comptage de ces tores plats périodiques, obtenus en collaboration avec Jialun Li.
Limites de Gromov-Hausdorff de variétés avec bornes sur la courbure de Ricci
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 7 March 2022 14:00-16:00 Lieu : Oratrice ou orateur : Ilaria Mondello Résumé :L’étude des limites de Gromov-Hausdorff de variétés à courbure de Ricci minorée a débuté en 1981 avec un théorème de pré-compacité de Gromov : depuis, une vaste théorie de la régularité a été développée grâce aux travaux de J. Cheeger, T.H. Colding, M. Anderson, G. Tian, A. Naber, W. Jiang. Néanmoins, dans de nombreuses situations, on ne dispose pas d’une minoration uniforme sur la courbure de Ricci. Il est donc important d’étudier des suites de variétés avec une hypothèse plus faible sur la courbure. Dans la première partie de cet exposé, je présenterai le contexte de la convergence de Gromov-Hausdorff et les principaux résultats connus dans le cas de courbure de Ricci minorée. J’introduirai ensuite une condition moins restrictive, la borne de Kato, et les résultats de régularité que nous avons obtenus dans un travail en collaboration avec G. Carron et D. Tewodrose. La deuxième partie de l’exposé sera dédiée aux nouvelles quantités monotones que nous avons introduites et au rôle fondamental qu’elles jouent dans nos preuves.