Differential geometry seminar

Upcoming presentations

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 December 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matteo D'Achille Résumé :

IPVTs and applications

I will discuss limits in low intensity of Poisson-Voronoi tessellations, which we called ideal Poisson-Voronoi tessellations (IPVTs).

In the colloquium part, I will focus on the IPVT of real hyperbolic space of dimension d, where a simple Poissonian description of the cell containing the origin enables an in-depth study of the geometric features of its tiles.

In the research seminar part, I will discuss sufficient conditions for convergence toward IPVTs in a general metric space, and illustrate them for the Cartesian product of two hyperbolic planes endowed with the $L^1$ metric. Then I will discuss an application to proving the smallness of the uniqueness threshold of Poisson/Bernoulli–Voronoi percolation on spaces with a non-amenable product structure.

Based on joint works with Nicolas Curien, Nathanaël Enriquez, Russell Lyons, Meltem Ünel (2303.16831, to appear on The Annals of Probability), on 2412.00822, and on incoming works with Ali Khezeli and with Jan Grebik, Ali Khezeli, Konstantin Recke, and Amanda Wilkens.


The geometry of Kerr black holes and the Teukolsky equation.

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 8 December 2025 15:30-16:30 Lieu : Oratrice ou orateur : Pascal Millet Résumé :

An important family of solutions to the Einstein vacuum equations is given by the Kerr metrics, which describe rotating black holes. In this talk, I will present some important geometric properties of these spacetimes relevant to the study of classical field equations such as the scalar waves, electromagnetism and linearized gravity. As observed by Teukolsky, by exploiting a special algebraic property of the spacetime, it is possible to decouple certain components of the fields from the rest of the system, leading to the so-called Teukolsky equation. Solutions of this equation can then be analyzed to recover information about the full system.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 January 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 26 January 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 February 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 March 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Séminaire commun de Géométrie - Colloquium Hugo Parlier

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 July 2022 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

https://dev-iecl.univ-lorraine.fr/events/titre-a-venir-99/


Séminaire commun de Géométrie - REPORTE

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 June 2022 14:00-16:00 Lieu : Oratrice ou orateur : Olga Romaskevich Résumé :

Séminaire reporté en 2022-2023. Date précisée ultérieurement.


Laplaciens de Witten : petites valeurs propres et cohomologie persistente (d’après des travaux en collaboration avec Francis Nier et Claude Viterbo)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 May 2022 15:00-16:00 Lieu : Salle Döblin Oratrice ou orateur : Dorian Le Peutrec Résumé :
Sur une variété riemannienne, le laplacien de Witten est une déformation du laplacien de Hodge via une fonction de 
Morse f et un paramètre semi-classique h>0. Il fut introduit par Witten en 1982 pour démontrer analytiquement
les inégalités de Morse. Celles-ci se déduisent du fait que, pour tout p\in{0,\dots,d\}, le laplacien de Witten agissant
sur les p-formes admet, lorsque h \to 0 :
— m_p valeurs propres de taille O(e^{-C/h}), où m_p est le nombre de points critiques d’indice p de f,
— dont b_p valeurs propres nulles, où b_p est le p-ième nombre de Betti de la variété.
Dans cet exposé, nous nous intéresserons aux taux exponentiels en jeu dans l’expression de ces valeurs propres en
exhibant leurs liens avec la topologie du potentiel f. Nous montrerons plus précisément que ces taux correspondent
aux longueurs des codes-barres de l’homologie persistante de f. Nous commencerons par le cas p=0, i.e. du laplacien
de Witten agissant sur les fonctions, puis continuerons avec le cas des p-formes, d’abord pour des potentiels de Morse f
génériques, puis en relaxant l’hypothèse de Morse.

Séminaire commun de Géométrie - Construction de surfaces minimales : approche variationnelle

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 May 2022 14:00-16:00 Lieu : Oratrice ou orateur : Laurent Mazet Résumé :

Comme tous les “Séminaires communs de géométrie”, cet exposé est constitué de deux parties, la première de 14h à 14h45 pour un large public, la seconde de 15h15 à 16h pour un public plus intéressé. Entre les deux, une pause “thé-gâteaux” est offerte par l’équipe de géométrie

Première partie : Construction de surfaces minimales : approche variationnelle.

Résumé : Après avoir expliqué ce que sont les surfaces minimales, je présenterai quelques éléments de l’approche variationnelle qui peut être utilisée pour en construire.

Partie spécialisée : Rigidité des variétés riemanniennes contenant un équateur

résumé : Si une métrique sur la sphère S^2 à courbure comprise entre 0 et 1 possède une géodésique de longueur 2\pi, alors la courbure est constante égale à 1. Ce résultat de rigidité est dû à Calabi. En dimension 3 et sous les mêmes hypothèses de courbure sectionnelle, l’existence d’une sphère minimale d’aire 4\pi rigidifie aussi la métrique. Ce résultat a été obtenu dans un travail précédent avec H. Rosenberg. Dans cet exposé je présenterai comment ce travail peut être généralisé en codimension supérieure. Je donnerai aussi comme conséquence un théorème de rigidité pour le “width” de Simon-Smith.


Variétés de Robinson et connexions adaptées

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 25 April 2022 15:30-16:30 Lieu : Salle Döblin Oratrice ou orateur : Robert Petit Résumé :

Les variétés de Robinson sont des variétés pseudoriemanniennes que l’on peut réaliser comme fibrés en droites (ou cercles) au dessus de variétés CR. Ces variétés sont présentes dans l’étude des solutions exactes de la relativité générale et plus précisément dans les métriques de type trou noir (Kerr, Taub-Nut). Après avoir présenté ces variétés et donné quelques exemples, nous introduirons dans cet exposé une connexion métrique (différente de la connexion de Levi-Civita) adaptée à l’étude de la géométrie de ces variétés.


Vacances

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 18 April 2022 15:30-16:30 Lieu : Oratrice ou orateur : Résumé :

16


Vacances

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 11 April 2022 15:30-16:30 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de Géométrie - Problèmes extrémaux en géométrie hyperbolique

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 April 2022 14:00-16:00 Lieu : Oratrice ou orateur : Bram Petri Résumé :

Je parlerai d’un projet en commun avec Maxime Fortier Bourque sur des problèmes extrémaux en géométrie hyperbolique. Les problèmes qui nous intéressent sont des analogues hyperboliques de problèmes classiques en géométrie euclidienne, comme le problème de la densité maximale des empilements de sphères et le problème du nombre de contact. L’objectif de l’exposé sera d’expliquer comment on peut utiliser la formule de trace de Selberg – une formule qui relie les longueurs des géodésiques sur une variété hyperbolique au spectre du Laplacien de cette variété – pour attaquer ces problèmes.

%%%%%%%%%%%%%%%%%%%%%%

Comme chaque “séminaire commun de géométrie”, une première partie de 14h à 14h45 sera un exposé d’introduction au sujet de type colloquium, suivi d’une pause thé-gateaux de 14h45 à 15h15 et de la suite de l’exposé de 15h15 à 16h.


Construction de représentations milnoriennes

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 28 March 2022 15:30-16:30 Lieu : Oratrice ou orateur : Ilia Smilga Résumé :

En 1977, Milnor a formulé la conjecture suivante : tout groupe discret de transformations affines agissant proprement sur l’espace affine est virtuellement résoluble. On sait maintenant que cet énoncé est faux ; l’objectif est à présent de mieux cerner les contre-exemples à cette conjecture. Il y a deux ans, j’ai présenté au séminaire de Géométrie Différentielle une méthode permettant de construire un très grand nombre de tels contre-exemples.

Cette fois-ci, d’une part, je vais au contraire me concentrer sur les cas particuliers dans lesquelles la conjecture de Milnor est vérifiée. Je vais expliquer dans quels cas je sais la démontrer, et quels sont les obstacles à surmonter pour couvrir les cas restants.

Je vais également évoquer les possibles critères de propreté de l’action d’un groupe discret affine fixé.


Comptage et équidistribution de tores plats

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 14 March 2022 15:30-16:30 Lieu : Oratrice ou orateur : Thi Dang Nguyen Résumé :

On se place dans l’espace des chambres de Weyl d’un espace symétrique de rang supérieur, ce qui correspond dans le cas d’une surface hyperbolique à son fibré unitaire tangent. Dans le cas compact ainsi que pour les orbivariétés qui sont des revêtements finis de SL(d,ZZ)\SL(d,IR), l’espace des chambres de Weyl contient des tores plats. Cela correspond, dans le cas des surfaces
hyperboliques aux orbites fermées du flot géodésique. Je vais vous présenter un résultat d’équidistribution et de comptage de ces tores plats périodiques, obtenus en collaboration avec Jialun Li.


3 4 5 6 7 8 9 10 11 12 13 14