Differential geometry seminar

Upcoming presentations

The geometry of Kerr black holes and the Teukolsky equation.

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 8 December 2025 15:30-16:30 Lieu : Oratrice ou orateur : Pascal Millet Résumé :

An important family of solutions to the Einstein vacuum equations is given by the Kerr metrics, which describe rotating black holes. In this talk, I will present some important geometric properties of these spacetimes relevant to the study of classical field equations such as the scalar waves, electromagnetism and linearized gravity. As observed by Teukolsky, by exploiting a special algebraic property of the spacetime, it is possible to decouple certain components of the fields from the rest of the system, leading to the so-called Teukolsky equation. Solutions of this equation can then be analyzed to recover information about the full system.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 January 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 26 January 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 February 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 March 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Autour de l'observabilité pour l'équation des ondes

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 May 2019 14:00-15:00 Lieu : Oratrice ou orateur : Emmanuel Humbert Résumé :

J’expliquerai comment un principe de compacité-concentration permet de montrer divers résultats, nouveaux ou déjà  connus, concernant la constante d’observabilité de l’équation des ondes, puis en application, des résultats sur les mesures quantiques d’une variété riemannienne compacte. Il s’agit de travaux en collaboration avec Y. Privat et E. Trélat.


Surfaces à  courbure moyenne constante dans $mathbb{S}^2timesmathbb{R}$ et $mathbb{H}^2timesmathbb{R}$

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 29 April 2019 14:00-15:00 Lieu : Oratrice ou orateur : Iury Domingos Résumé :

Dans cet exposé, on établira des conditions nécessaires et suffisantes pour qu’une 2-variété riemannienne soit isométriquement immergée comme surface à  courbure moyenne constante dans certaines variétés produits. De plus, dans le cas o๠la 2-variéte riemannienne a une courbure intrinsèque constante, on classifiera ces immersions isométriques. Il s’agit d’un travail en cours en collaboration avec Benoît Daniel (UL) et Feliciano Vità³rio (UFAL).


On non-compact quasi-Einstein manifolds

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 1 April 2019 14:00-15:00 Lieu : Oratrice ou orateur : Marcos Ranieri Résumé :

In this talk, we will show some results about quasi-Einstein manifolds. Quasi-Einstein manifolds can be characterized as bases of Einstein warped products. On the first part, we investigated the infinity structure of a complete non-compact quasi-Einstein manifolds. In particular, we show that if M is a base of a Ricci-flat warped product then M is connected at infinity. When M is the basis of an Einstein warped product with Einstein constant λ < 0, there are examples with more than one end. In this case, we show that M is non-parabolic and, on a given hypothesis about scalar curvature, M has only one end f-non-parabolic. In addition, we obtain two estimates for the volume of the geodesic balls of M. On the second part, we will show that Bach-flat non-compact quasi-Einstein manifolds with λ = 0 and positive Ricci curvature are isometric to a rotationally symmetric metric whose fiber is a Einstein manifold.

This is joint work with R. Batista and E. Ribeiro Jr.


Régularité de l'entropie en courbure négative

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 25 March 2019 13:45-14:45 Lieu : Oratrice ou orateur : Barbara Schapira Résumé :

Si l’on fait une variation $C^1$ d’une métrique à  courbure négative sur une variété compacte, alors l’entropie du flot géodésique (invariant dynamique naturel) varie de manière $C^1$. Ce résultat est dà» à  Katok-Knieper-Weiss. Dans un travail en commun avec Samuel Tapie, nous montrons que ce résultat est valide pour une large classe de variétés non compactes à  courbure négative. J’introduirai les notions intervenant dans ce résumé, et quelques idées des preuves.


Géométrie hyperbolique des formes des corps convexes (avec C. Debin)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 28 January 2019 14:00-15:00 Lieu : Oratrice ou orateur : François Fillastre Résumé :

On introduit une distance sur l’ensemble des corps convexes de l’espace euclidien de dimension n, à  translations et homothéties près. Cet ensemble se plonge isométriquement comme un convexe de l’espace hyperbolique de dimension infinie. La structure lorentzienne ambiante est donnée par une extension de l’aire intrinsèque des corps convexes. On en déduit que l’ensemble des formes des corps convexes (c’est-à -dire les corps convexes à  similitudes près) est muni d’une distance propre de courbure plus grande que -1. Pour les convexes en dimension 3, cet espace est homéomorphe à  l’espace des métriques sur la sphère de courbure positive.


Fonctions de type hyperbolique

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 19 November 2018 14:00-15:00 Lieu : Oratrice ou orateur : Pierre Py Résumé :

Par analogie avec les fonctions de type positif et les fonctions conditionnellement de type négatif, classiques en théorie des représentations des groupes, nous étudions les fonctions de type hyperbolique. Nous donnons des exemples de telles fonctions et quelques applications. Il s’agit d’un travail en commun avec Nicolas Monod ( https://arxiv.org/abs/1805.12479 ).


Lower bounds for the stability index of constant mean curvature surfaces

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 12 November 2018 14:00-15:00 Lieu : Oratrice ou orateur : Marcos Petràºcio Cavalcante Résumé :

We prove that the stability index of a compact constant mean curvature (CMC) surface in the Euclidean space or in the unit sphere is bounded from below by a linear function of its genus. We also will discuss some results in the case of free-boundary CMC surfaces in a mean convex body of R^3. These results are part of joint works with Darlan de Oliveira.


Le bord d'une variété localement conformément plate

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 5 November 2018 16:00-17:00 Lieu : Oratrice ou orateur : Sergiu Moroianu Résumé :

Par la formule de la signature de Hirzebruch et d’Atiyah, Patodi et Singer, l’invariant êta du bord totalement géodésique $M$ d’une variété orientée plate $X$ de dimension $4k$ doit être un nombre entier. Nous démontrons un résultat similaire dans un contexte plus général: si $X$ est une variété Riemannienne compacte, localement conformément plate et à  bord $M$, alors l’invariant êta de $M$ doit être un entier, sans aucune condition sur le plongement de $M$ dans $X$. Ce résultat fournit des obstructions à  l’existence d’une métrique localement conformément plate sur $X$ prescrite le long de $M$.


Free boundary hypersurfaces in the unit ball

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 5 November 2018 13:30-14:30 Lieu : Oratrice ou orateur : Feliciano Vità³rio Résumé :

In this talk we will show some topological and geometrical results for free boundary submanifolds under some hypothesis on the length of traceless second fundamental form. If time permits, we will deal with the problem of prescribe the curvature on Riemannian manifolds with boundary.


Prescription de la courbure de Gauss des convexes hyperboliques

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 22 October 2018 14:00-15:00 Lieu : Oratrice ou orateur : Philippe Castillon Résumé :

La courbure de Gauss d’un corps convexe peut être vue comme une mesure (avec certaines propriétés) sur la sphère unité, étendant ainsi la notion de courbure de Gauss des convexes réguliers. Le problème d’Alexandrov consiste, à  partir d’une telle mesure, à  reconstruire le convexe. Pour les convexes de l’espace euclidien, une façon de résoudre ce problème est de se ramener à  un problème de transport optimal sur la sphère.
Pour les convexes de l’espace hyperbolique, ce problème de prescription de la courbure de Gauss est tout aussi naturel. Je montrerai comment définir la courbure de Gauss par une propriété de transport de mesures et comment cette approche permet de résoudre le problème d’Alexandrov en se ramenant à  un problème d’optimisation non linéaire. Si le temps le permet, j’expliquerai comment résoudre ce problème d’optimisation.
Travail en commun avec Jérôme Bertrand.


7 8 9 10 11 12 13 14 15 16 17 18