Differential geometry seminar

Upcoming presentations

Abonnement iCal

Past presentations

Séminaire Commun de Géométrie - équidistribution d'intersections typiques avec des sous-variétés localement homogènes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 May 2023 14:00-16:00 Lieu : Oratrice ou orateur : Nicolas Tholozan Résumé :
Titre: équidistribution d’intersections typiques avec des sous-variétés localement homogènes
Résumé: Je présenterai un travail en collaboration avec Salim Tayou qui donne une réponse assez générale à la question suivante: Etant donnée une sous-variété V d’un espace localement homogène X et une suite équidistribuée O_n de sous-espaces localement homogènes de X, vers quoi s’équidistribue l’intersection de O_n avec V ?
Cette question est principalement motivée par ses applications à la théorie de Hodge. Notre réponse fournit par exemple des théorèmes d’équidistribution pour le lieu de Noether—Lefschetz d’une famille de variété algébriques ou pour les variétés abéliennes à multiplication complexe.

Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 April 2023 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 17 April 2023 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire Commun de Géométrie - Géométrie des surfaces plates de grand genre

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 April 2023 14:00-16:00 Lieu : Oratrice ou orateur : Elise Goujard Résumé :

Dans cet exposé on s’intéressera aux surfaces de demi-translation et plus particulièrement aux surfaces à petits carreaux de demi-translation. Après avoir rappelé quelques résultats sur la répartition de ces surfaces dans les espaces de modules de surfaces plates, j’exposerai des résultats récents et des conjectures sur la géométrie et la combinatoire de ces surfaces en grand genre.

Dans le cas générique (strates principales des espaces de modules), ces résultats sont dus à un travail en collaboration avec V. Delecroix, P.Zograf and A. Zorich, et s’interprètent également en terme de mutlicourbes fermées sur les surfaces. J’expliquerai également ce que l’on sait faire dans le cas des strates impaires et les conjectures correspondantes (travail en commun avec E. Duryev et I. Yakovlev).


Semi-continuité supérieure de l’indice de Morse des immersions de Willmore

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 27 March 2023 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexis Michelat Résumé :

L’indice de Morse d’un point critique d’un lagrangien L est la dimension de l’espace vectoriel
maximal sur lequel la dérivée seconde D^2 L s’annule. Dans la théorie classique des variétés de Hilbert, on montre que l’indice de Morse est semi-continu inférieurement, tandis que la somme de l’indice
de Morse et de la nullité (la dimension du noyau de l’opérateur différentiel associé à la dérivée seconde) est semi-continu supérieurement.
Dans un article récent (arXiv:2212.03124) de Francesca Da Lio, Matilde Gianoca, et Tristan
Rivière, une nouvelle méthode d’estimation de l’indice de Morse est développée dans le cas des
lagrangiens invariants conformes (ce qui inclut les applications harmoniques) en dimension 2. La
preuve repose sur une analyse délicate du comportement de la dérivée seconde dans les régions des
« cous » — qui lient la surface macroscropique à ses « bulles » — ainsi qu’une estimée ponctuelle de
la solution dans ces régions.
Dans cet exposé, nous montrerons comment généraliser cette méthode à l’énergie de Willmore, un
lagrangien invariant conforme associé aux immersions d’une surface de l’espace Euclidien. Les points
critiques de l’énergie de Willmore vérifiant une équation elliptique non-linéaire d’ordre 4, certaines
étapes feront apparaître de redoutables nouvelles difficultés techniques.
Si le temps le permet, nous essaierons de montrer le caractère universel de cette méthode, qui
laisse entrevoir de nombreuses extensions possibles : fonctionnelles de type Ginzburg-Landau en dimension 2, applications bi-harmoniques en dimension 4, fonctionnelle de Yang-Mills en dimension 4,
et généralisation de ces méthodes aux problèmes de min-max.
Travail en collaboration avec Tristan Rivière (ETH Zürich).


Mélange exponentiel du flot de repère sur les variétés hyperbolique géométriquement fini

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 13 March 2023 14:00-15:00 Lieu : Oratrice ou orateur : Jialun Li Résumé :

Soit X une variété hyperbolique géométriquement fini, c-a-d, une variété hyperbolique avec un domaine fondamental de polyédrale fini. Il existe une mesure unique sur la fibre tangent unitaire invariante par le flot géodésique d’entropie maximal, et on considère son relevé dans le fibré des repères. Dans un travail commun avec Pratyush Sarkar et Wenyu Pan, on a démontré que le flot de repère est exponentiellement mélangeant par rapport à cette mesure. Pour établir le mélange exponentiel, on utilise un codage dénombrable de flot et une version de la méthode de Dolgopyat, à la Sarkar-Winter et Tsujii-Zhang. Pour surmonter les difficultés de la structure fractale, on a besoin de grand déviation pour la récurrence symbolique dans les grands ensembles.


Séminaire Commun de Géométrie - Hyperbolicité en présence d'un grand système local

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 March 2023 14:00-16:00 Lieu : Oratrice ou orateur : Yohan Brunebarbe Résumé :

Hyperbolicité en présence d’un grand système local

 

Serge Lang a proposé plusieurs conjectures influentes reliant différentes notions d’hyperbolicité pour les variétés algébriques complexes projectives. Par exemple, il a conjecturé que le lieu balayé par les courbes entières coïncide avec le lieu balayé par les sous-variétés qui ne sont pas de type général, du moins après avoir pris les fermetures de Zariski. J’expliquerai que certaines de ces conjectures (dont celle ci-dessus) sont vraies pour les variétés qui admettent un grand système local complexe au sens de Campana et Kollár (par exemple toute variété qui possède une variation de structures de Hodge mixtes dont l’application des périodes est finie).


Vacances - pas de séminaire

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 February 2023 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :

Une inégalité pour la norme l_1 des variétés complètes (An l_1-norm inequality for complete manifolds) (en visio)

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 13 February 2023 15:30-16:30 Lieu : Oratrice ou orateur : Caterina Campagnolo Résumé :
Dans les années 80, Gromov a introduit un nouvel invariant topologique, le volume simplicial. Il a montré l’existence d’une connexion profonde entre cet invariant topologique et la géométrie des variétés au travers de son “inégalité principale”, reliant le volume simplicial au volume sous certaines conditions de courbure.
Depuis, la communauté a essayé de généraliser et d’améliorer cette relation, en affaiblissant les hypothèses sur la courbure, en étendant ou en améliorant l’inégalité.
Dans un travail avec Shi Wang, nous étendons les résultats de Besson-Courtois-Gallot sur la norme l_1 de la classe fondamentale d’une variété fermée à toutes les classes d’homologie d’une variété complète. Nos inégalités sont plus précises que celles de Gromov et s’expriment en termes de l’exposant critique de la variété.
Je définirai les objets nécessaires, donnerai le contexte et enfin les idées principales de la preuve.
\  \

Abstract : In the 80’s, Gromov introduced a new topological invariant, the simplicial volume of a manifold. He showed its deep connection with geometry by proving his “Main inequality”, relating the simplicial volume to the volume of the manifold under some curvature assumptions.

Since then, the community has tried to generalize and enhance this relation by weakening the curvature assumptions, extending, or improving the inequality.
In joint work with Shi Wang, we extend the results of Besson-Courtois-Gallot about the l_1-norm of the fundamental class of a closed manifold to all homology classes of a complete manifold. Our inequalities are sharper than Gromov’s original ones and are expressed in terms of the critical exponent of the manifold.
I will define all necessary objects, give some context and the main ideas of the proof.

Séminaire Commun de Géométrie - l'espace des métriques kählériennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 February 2023 14:00-16:00 Lieu : Oratrice ou orateur : Eleonora Di Nezza Résumé :

L’espace des métriques kähleriennes.

Un problème classique en géométrie kählerienne est de trouver des métriques kähleriennes spéciales, cet à dire avec des bonnes propriétés de courbure. En relation avec ce problème, l’étude de l’espace des métriques kähleriennes, que l’on denote H, devient cruciale.

Cet espace à été étudié à partir des année 80 quand Mabuchi a introduit un produit scalaire sur chaque espace tangent. À partir de cela, une famille de distances d_p, p>=1, on été définie sur H en démontrant que (H, d_p) est une espace métriques mais pas complet.
Dans la première partie cette exposé on donnera un panorama de tout ce que on sait sur cet espace. Puis parlera plus en détail de ses géodésiques, son complété métrique et des distances d_p.
Les résultats présentés dans cette exposé sont basés sur des deux travaux, un en collaboration avec Vincent Guedj et l’autre en collaboration avec Chinh Lu.


1 2 3 4 5 6 7 8 9 10 11 12