Séminaire Probabilités et Statistique

Exposés à venir

Abonnement iCal

Archives

Multiple-fragmentation stochastic processes driven by a spatial flow

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 7 février 2019 10:45-11:45 Lieu : Oratrice ou orateur : Lucian Beznea Résumé :

We study stochastic multiple-fragmentation processes driven by a spatial flow. The final goal is actually to make a numerical simulation of the time evolution of a system of particles located on an Euclidean surface.

We take into account not only the fragmentation of the mass of a particle, but also of the kinetic energy. The talk is based on a joint work with Ioan R. Ionescu and Oana Lupascu-Stamate.


Quelques propriétés géométriques des graphes stables

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 31 janvier 2019 10:45-11:45 Lieu : Oratrice ou orateur : Bénédicte Haas Résumé :

Considérons un graphe G_n uniformément choisi dans
l’ensemble des graphes à  n noeuds étiquetés avec des degrés D_1,…,D_n
donnés, eux-mêmes aléatoires i.i.d. tels que E[D^2]<∞ et P(D=2)E[D]. On se place ici dans le cas critique
E[D(D-1)]=E[D] et on suppose que P(D=k)∼ck^{-2-α}, 1<α<2. Des travaux de
Joseph 14, Riordan 12 et Conchon-Kerjan et Goldschmidt (à  paraître), il
résulte que le graphe G_n, après normalisation, converge en loi vers un
graphe continu aléatoire appelé graphe stable d'indice α. Nous
présenterons ici quelques propriétés géométriques de ce graphe limite.

Basé sur un travail en collaboration avec C. Goldschmidt et D.
Sénizergues.


Do we need a new cosmological model? GMO-CLONES, a solution to the precision cosmology dilemma

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 janvier 2019 10:45-11:45 Lieu : Oratrice ou orateur : Jenny Sorce Résumé :

To unveil the nature of 95% of the Universe, missions such as Euclid aim at reaching a few percent precision. In
this quest for precision, tensions between the standard cosmological model and observations already arise: local and global H0
measurements are incompatible at more than 3σ, anomalies emerge within the CMB, etc. These tensions suggest that we should perhaps not be so quickly inclined to disregard our observational site as a bias factor: Accuracy
is not Precision. Few percent precision and local-induced biases are of the same order of magnitude. A precise
mapping of the local distribution of matter is essential to properly account for these biases. Simulations constrained to resemble the local Universe constitute the tool of choice for such a mapping. I will summarize the genesis of the initial conditions of such simulations as well as present a few results that promise to tremendously impact our understanding of the local-induced biases that will matter in future analyses. Eventually, I will present the initial conditions of the
GMO-CLONES (GMO-Constrained LOcal & Nesting Environment Simulation) suite to reach an Accurate Precision Cosmology.


Homogénéisation pour les mouvements cinétiques ergodiques

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 17 janvier 2019 10:45-11:45 Lieu : Oratrice ou orateur : Pierre Perruchaud Résumé :

Un exemple de mouvement cinétique est celui d’une particule, soumise à 
des chocs aléatoires. En supposant que les chocs encodent
l’accélération, la vitesse suit une équation différentielle
stochastique, tandis que la position intègre simplement la vitesse. Le
mouvement résultant peut être assez délicat à  étudier, si par exemple la
particule est contrainte à  rester sur une surface, ou que la dynamique
de la vitesse est complexe. Je montrerai que sous des hypothèses très
simples de symétrie et d’ergodicité pour le processus vitesse, le
processus convenablement renormalisé converge vers un mouvement brownien
lorsque les chocs augmentent en intensité.


A polarization-oriented framework for bivariate random signals

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 10 janvier 2019 10:45-11:45 Lieu : Oratrice ou orateur : Julien Flamant Résumé :

Bivariate signals appear in a broad range of applications: polarized waveforms in seismology and optics, current velocities in oceanography, etc. Formally, bivariate signals are 2D vector time series. Existing approaches for bivariate signal processing do not provide a straightforward description of the signal in terms of its polarization properties. For this purpose we introduce a new and generic framework based on a tailored quaternion Fourier transform.
This new framework re-establishes a clear interpretability in terms of polarization attributes of usual quantities such as spectral densities, linear filters, etc.
In this talk, I will introduce the main features of this approach, with the focus on second-order stationary random bivariate signals. I will discuss spectral analysis, linear filtering and some original decompositions of bivariate signals. Synthetic data will illustrate the usefulness of the proposed framework.


Théorie des perturbations basée sur une nouvelle formule d'intégration par parties non linéaire

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 13 décembre 2018 10:45-11:45 Lieu : Oratrice ou orateur : Sara Mazzonetto Résumé :

Pendant le séminaire, nous introduirons une formule d’intégration par partie non linéaire qui peut être vu comme une généralisation stochastique du lemme de Alekseev-Gröbner.

La preuve est basée sur le calcule de Malliavin et sur l’expression de certains intégrales stochastiques anticipatifs comme intégrales de Skorohod.

La formule que l’on présente induit une théorie de perturbations, i.e. une façon d’estimer, en terme de caractéristiques locales, l’erreur globale entre la solution exacte d’une équation différentielle stochastique et un processus d’Itô quelconque.

Si le temps le permet, nous parlerons des différences par rapport au résultat de perturbation établi précédemment par M. Hutzenthaler et A. Jentzen, et des applications comme la dérivation des taux de convergence en moyenne quadratique des schémas d’approximations pour ED(P)S.

(Travail en collaboration avec A. Hudde, M. Hutzenthaler, et A. Jentzen)


AMARETTO: Multi-omics data fusion for cancer data

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 décembre 2018 10:45-11:45 Lieu : Oratrice ou orateur : Magali Champion Résumé :

Integrating the increasing number of available multi-omics cancer data remains one of the main challenges to improve our understanding of cancer. Our approach is based on AMARETTO, an algorithm that integrates DNA methylation, DNA copy number and gene expression data to identify cancer driver genes and associates them to modules of co-expressed genes. We then propose a pancancer version of AMARETTO by connecting all modules in pancancer communities. This leads to the identification of major oncogenic pathways and master regulators involved in different cancers.


An open problem in ruin theory and its diffusion approximation regime

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 29 novembre 2018 10:45-11:45 Lieu : Oratrice ou orateur : Nabil Kazi-Tani Résumé :

The De Vylder and Goovaerts conjecture is an open problem in risk theory, stating that the finite time ruin probability in a standard risk model is greater or equal to the corresponding ruin probability evaluated in the associated model with equalized claim amounts. Equalized means here that the jump sizes of the associated model are equal to the average jump in the initial model between 0 and a terminal time T.
In this talk, we will consider the diffusion approximations of both the standard risk model and the associated risk model. We will prove that the associated model, when conveniently renormalized, converges in distribution to a gaussian process satisfying a simple SDE with explicit coefficients. We will then compute the probability that this diffusion hits the level 0 before time T and compare it with the same probability for the diffusion approximation for the standard risk model, which is well known. We will then conclude that the De Vylder and Goovaerts conjecture holds true for these diffusion limits.
This is a joint work with Stefan Ankirchner (University of Jena) and Christophette Blanchet-Scalliet (Ecole Centrale de Lyon and ICJ).


Quasicrystal phases in a finite-range lattice gas model

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 22 novembre 2018 10:45-11:45 Lieu : Oratrice ou orateur : Siamak Taati Résumé :

In a quasicrystal, the arrangement of the atoms is highly ordered (as
in an ordinary crystal) but non-periodic (unlike in a crystal). There
are various mathematical challenges in connection with quasicrystals.
From the point of view of statistical mechanics, the major open
problem is to provide a mathematical explanation of the formation and
stability of quasicrystals in presence of thermal fluctuations. In
this talk, I will present a (toy) lattice gas model with finite-range
interactions that has stable quasicrystal phases at positive
temperature (i.e., Gibbs measures supported at perturbations of
non-periodic tilings). The construction is based on old results on
cellular automata and tilings, in particular, a method of simulating
one cellular automaton with another that is resilient against noise,
and the existence of aperiodic sets of Wang tiles that are
deterministic in one direction.


Fleming-Viot particle systems: asymptotic behavior and illustration in molecular dynamics

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 novembre 2018 10:45-11:45 Lieu : Oratrice ou orateur : Arnaud Guyader Résumé :

The distribution of a Markov process with killing, conditioned to be
still alive at a given time, can be approximated by a Fleming-Viot
particle system. In such a system, each particle is simulated
independently according to the law of the underlying Markov process, and
branches onto another particle at each killing time. The purpose of this
talk is to present a central limit theorem for the law of the
Fleming-Viot particle system at a given time in the large population
limit. We will illustrate this result on an application in molecular
dynamics. This is a joint work with Frédéric Cérou, Bernard Delyon and
Mathias Rousset.