Séminaire EDP et Applications | Nancy

Exposés à venir

Abonnement iCal

Archives

A model of superfluidity with temperature effects

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 septembre 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reika Fukuizumi (Université de Waseda) Résumé :

Existence of solutions to the fractional Vlasov-Poisson-Fokker-Planck equation via commutator estimates

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 juin 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ivan Moyano (Nice) Résumé :

We study the existence of solutions to a kinetic system
describing the dynamics of a large number of particles undergoing the
effect of a self-generated field (electrical or gravitational) and the
action of random jumps in velocity according to a $2\sigma$-stable
Poisson process. The evolution of the corresponding system can be seen
as a fractional version of the classical Valsov-Poisson-Fokker-Planck
systems in which the dissipating part is described by a fractional
Laplacian. We address the question of local existence in time of mild
solutions for this system in all natural ranges $0 < \sigma < 1$ thanks
to the use of commutator estimates à la Kato-Ponce. We also investigate
the possibility of propagating the lifespan of these solutions in the
range $\frac{1}{2} < \sigma < 1$ and get global solutions in a natural
weighted $L^2$ space, which is possible thanks to the use of fundamental
solutions combined with an approach due to Bouchut (\emph{J. Funct.
Analysis} Vol 111(1) 1993 pp 239-258.).


Méthodes parallèles en temps pour des problèmes de contrôle

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 juin 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Félix Kwok (Université de Laval) Résumé :

Lorsque nous résolvons numériquement un problème de contrôle optimal gouverné par des équations aux dérivées partielles instationnaires, les conditions d’optimalité donnent des systèmes avec un grand nombre d’équations fortement couplées. Il est donc souhaitable de résoudre de tels systèmes en parallèle sur plusieurs processeurs. L’approche classique consiste à décomposer le domaine spatial en plusieurs sous-domaines pour obtenir des problèmes plus petits à résoudre en parallèle. Une autre possibilité intéressante est de décomposer le domaine temporel pour obtenir des méthodes « parallèles en temps ». Dans cet exposé, je présenterai deux méthodes de résolution basées sur une telle décomposition : la première utilise uniquement des communications entre sous-domaines voisins, alors que la deuxième nécessite la résolution d’un système global, mais de taille réduite. Je démontrerai la convergence des deux méthodes lorsque l’EDP est de type diffusif. Je présenterai enfin quelques exemples numériques pour montrer le comportement de ces algorithmes en fonction du nombre de sous-domaines.


Robust energy a posteriori estimates for nonlinear elliptic problems

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 juin 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : André Harnist (Inria Paris) Résumé :

In this talk, we present a posteriori estimates for finite element approximations of nonlinear elliptic problems satisfying strong-monotonicity and Lipschitz-continuity properties. These estimates include, and build on, any iterative linearization method that satisfies a few clearly identified assumptions; this encompasses the Picard, Newton, and Zarantonello linearizations. The estimates give a guaranteed upper bound on an augmented energy difference (reliability with constant one), as well as a lower bound (efficiency up to a generic constant). We prove that for the Zarantonello linearization, this generic constant only depends on the space dimension, the mesh shape regularity, and possibly the approximation polynomial degree in four or more space dimensions, making the estimates robust with respect to the strength of the nonlinearity. For the other linearizations, there is only a computable dependence on the local variation of the linearization operators. We also derive similar estimates for the energy difference. Numerical experiments illustrate and validate the theoretical results, for both smooth and singular solutions.


Equipartition de l'énergie pour les ondes de surface

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 juin 2023 11:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Claude Zuily (Orsay) Résumé :

On traveling waves for some Gross-Pitaevskii equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : André de Laire (Lille) Résumé :
In this talk, we will discuss some properties of traveling waves solutions for some variants of the classical Gross-Pitaevskii equation in the whole space, in order to include new physical models in Bose-Einstein condensates and nonlinear optics. We are interested in the existence of finite energy localized traveling waves solutions with nonvanishing conditions at infinity, i.e. dark solitons. After a review of the state of the art in the classical case, we will show some results for a family of Gross-Pitaevskii equations with nonlocal interactions in the potential energy, obtained by variational techniques. Then, we will discuss the existence and behavior of the dark solitons for the Gross-Pitaevskii equation is a strip, according to its width.
This is joint work with Philippe Gravejat, Salvador Lopez-Martinez, and Didier Smets.

Une frontière de la stabilité non linéaire : les ondes singulières des systèmes hyperboliques

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Miguel Rodrigues (Rennes) Résumé :

L’exposé se veut une introduction à l’une des frontières actuelles de notre compréhension de la stabilité non linéaire des ondes progressives des équations aux dérivées partielles, spécifiquement comment la stabilité spectrale implique la stabilité non linéaire pour les ondes progressives générales des systèmes hyperboliques.

Les principaux obstacles à une théorie générale trouvent leur origine dans le fait que les profils des ondes comprennent typiquement des discontinuités et/ou des points caractéristiques, tous deux ayant un fort impact même au niveau spectral.

L’exposé montrera quelques avancées significatives vers une théorie générale obtenues par l’orateur dans une série de travaux en collaborations (disjointes) avec Vincent Duchêne (Rennes), Paul Blochas (Rennes), Louis Garénaux (Karlsruhe) et Grégory Faye (Toulouse).


Vers l’invariance de la mesure de Gibbs pour NLS sur la sphère.

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 mai 2023 09:30-10:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Camps (Université de Nantes) Résumé :


Mesures invariantes pour l'équation de Benjamin-Ono

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nikolay Tzvetkov (ENS Lyon) Résumé :

Nous allons discuter des méthodes pour construire des mesures invariantes pour l’équation de Benjamin-Ono et le rôle joué par l’intégrabilité de cette équation dans ces constructions.


Rearrangement of gradient

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 mai 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrea Gentile (Naples) Résumé :


1 2 3 4 5 6 7 8 9 10 11 12