Séminaire de Théorie des Nombres de Nancy-Metz

Exposés à venir

Abonnement iCal

Archives

Conjecture de Manin—Peyre pour une famille de solides admettant des fibrations quadriques

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 23 juin 2022 11:00-12:00 Lieu : Oratrice ou orateur : Zhizhong Huang (IST Austria) Résumé :

Manin et ses collaborateurs ont conjecturé des formules asymptotiques pour le nombres des points de hauteur anticanonique bornée sur les variétés de Fano. Nous démontrons cette conjecture pour la famille de variétés définies par l’équation $$L_1(x_1,x_2)y_1^2+L_2(x_1,x_2)y_2^2+L_3(x_1,x_2)y_3^2+L_4(x_1,x_2)y_4^2=0,$$ où $L_i$ sont des formes bilinéaires deux à deux non-proportionnelles. La constante arithmétique apparaissant dans le terme principal coïncide avec celle conjecturée par Peyre. La démonstration utilise divers outils de la théorie analytique des nombres. Il s’agit d’un travail en commun avec D. Bonolis et T. Browning.


Well-behaved Beurling number systems

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 juin 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Frederik Broucke (Ghent University) Résumé :
A Beurling number system generalizes the multiplicative structure of the classical primes and integers. It consists of a non-decreasing unbounded sequence of real numbers $\{p_j\}_{j=1}^{\infty}$ with $p_1>1$, called the generalized primes, and the sequence of generalized integers $\{n_k\}_{k=0}^{\infty}$ which consists of the number 1 and all possible products of (powers of) the $p_j$. With such a system, one associates counting functions $\pi(x)$ and $N(x)$, counting the number of generalized primes and integers, respectively, below $x$. The primes satisfy the PNT if $\pi(x) \sim x/\log x$, and the integers have a density if $N(x) \sim \rho x$ for some positive $\rho$. If in these relations one has an error term of the form $O(x^a)$ for some $a<1$, one calls the primes or integers well-behaved.
In this talk, I will discuss various properties of these classes of Beurling systems, including extremal examples and omega results. I also discuss systems for which the primes and integers are simultaneously well-behaved. Finally, I will talk about some open problems.

Optimality for Tauberian theorems

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 22 juin 2022 10:00-11:00 Lieu : Salle Döblin Oratrice ou orateur : Gregory Debruyne (Ghent University) Résumé :

One version of the Ingham-Karamata theorem states that for each slowly oscillating function $\tau$ whose Laplace transform admits an analytic continuation beyond the line $\Re s \: s = 0$ must obey the asymptotic law $\tau(x) = o(1)$. This theorem is a cornerstone in Tauberian theory and has plenty of applications in number theory; one of the quickest proofs of the Prime Number Theorem passes through this theorem. 

We shall show that the decay rate $o(1)$ in the Ingham-Karamata theorem is optimal even if one assumes analytic continuation of the Laplace transform up to a larger halfplane. The attractive proof is based on the open mapping theorem. 


De l’identité de B.-Reutenauer à la conjecture de Fraenkel et Simpson

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 17 juin 2022 11:00-12:00 Lieu : Salle Döblin Oratrice ou orateur : Srečko Brlek (UQAM) Résumé :

Une identité remarquable relie deux mesures de complexité sur les mots: complexité en facteurs $C(n)$ et complexité palindromique $P(n)$. Il s’avère qu’elle est aussi valide quand on remplace la complexité palindromique $P(n)$ par celle des facteurs carrés $S(n)$. Ce résultat, facile à établir pour les mots finis, suggère cependant un lien avec la conjecture sur le nombre de facteurs carrés distincts dans un mot : les graphes de Rauzy y jouent un rôle essentiel.


Combinatoire des mots et théorie de Markoff

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 16 juin 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Christophe Reutenauer (UQAM) Résumé :

La théorie de Markoff, élaborée par lui pour les formes quadratiques, a été étendue par Hurwitz et ses successeurs, aux approximations des réels par des rationnels. Elle concerne les nombres qui sont « mal approximés », le plus mauvais d’entre eux étant le nombre d’or. On verra comment certains mots sur un alphabet à deux lettres, appelés mots de Christoffel, s’introduisent naturellement dans cette théorie.


Ensembles d'entiers sans progression arithmétique

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 9 juin 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Anne de Roton (IECL) Résumé :

Loi Gaussienne du nombre d'entiers sans facteur carré dans les intervalles courts

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 19 mai 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Sacha Mangerel (Université de Durham) Résumé :
C’est un problème d’intérêt général en théorie analytique des nombres de déterminer de manière précise la répartition des éléments d’une suite arithmétique, par exemple, la suite des nombres premiers. Étant donné un paramètre $1 \leq h \leq X$, on supposerait peut-être que le nombre d’éléments d’une suite« suffisamment régulière » dans un intervalle $(x,x+h]$, où $X \leq x \leq 2X$ est choisi uniformément au hasard, suit une loi probabiliste Gaussienne (au moins dans certaines plages de h = h(X)).  Suite au travail de Montgomery et Soundararajan de 2004, un tel résultat est connu pour la suite des nombres premiers, pourvu qu’on présume comme valide plusieurs conjectures profondes, entre autres l’hypothèse de Riemann. 

Pour modéliser les premiers, nous considérerons au cours de l’exposé de telles questions de nature statistique concernant la suite des entiers sans facteur carré (SFC), parmi d’autres suites « criblées ». J’espère pouvoir motiver et expliquer notre résultat principal inconditionnel qui énonce que le nombre de SFC dans les intervalles courts uniformément aléatoires suit en effet une loi Gaussienne, ce faisant résolvant plusieurs problèmes de R.R. Hall.

Ceci est un travail en commun avec O. Gorodetsky et B. Rodgers.


Summing $\mu(n)$: an even faster elementary algorithm

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 12 mai 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Lola Thompson (Université de Utrecht) Résumé :

We present a new elementary algorithm for computing $M(x) = \sum_{n \leq x} \mu(n),$ where $\mu(n)$ is the Möbius function. Our algorithm takes
\[\begin{aligned}
\mathrm{time} \ \ O_\epsilon\left(x^{\frac{3}{5}} (\log x)^{\frac{3}{5}+\epsilon} \right)
\ \ \mathrm{and}\ \ \mathrm{space} \ \ O\left(x^{\frac{3}{10}} (\log x)^{\frac{13}{10}}
\right)\end{aligned},\] which improves on existing combinatorial algorithms. While there is an analytic algorithm due to Lagarias-Odlyzko with computations based on the integrals of $\zeta(s)$ that only takes time $O(x^{1/2 + \epsilon})$, our algorithm has the advantage of being easier to implement. The new approach roughly amounts to analyzing the difference between a model that we obtain via Diophantine approximation and reality, and showing that it has a simple description in terms of congruence classes and segments. This simple description allows us to compute the difference quickly by means of a table lookup. This talk is based on joint work with Harald Andrés Helfgott.


Euler-Kronecker constants and cusp forms

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 9 mai 2022 11:00-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pieter Moree (Max Planck Institute, Bonn) Résumé :


A general sieve problem

Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 5 mai 2022 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Andreas Weingartner (Southern Utah University, États-Unis) Résumé :

Given an arithmetic function $\theta$, we consider the set
$$ \mathcal{B}_\theta = \Bigl\{n\ge 1: p|n \Rightarrow p\le \theta\Bigl(\prod_{q<p \atop q^\alpha || n} q^\alpha \Bigr) \Bigr\},$$
where $p$ and $q$ denote primes. Depending on the choice of $\theta$, the possible sets $\mathcal{B}_\theta$ include the set of prime powers, almost primes, friable numbers, dense numbers, and practical numbers.
We will discuss (1) asymptotic results for the counting function of $\mathcal{B}_\theta$, (2) a generalization of the Siegel-Walfisz theorem, and (3) the normal order of the number of prime factors of integers in $\mathcal{B}_\theta$.


1 2 3 4 5 6 7 8 9 10 11 12