Upcoming presentations
Réunion d'équipe
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 24 April 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pascal Moyal Résumé :Réunion d’équipe possible
Polytopes aléatoires et corps flottants - Partie 2
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 24 April 2025 15:30-17:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Goaoc Résumé :Deuxième de deux séances.
Un modèle classique de polytope aléatoire proposé par Renyi et Sulanke dans les années 60 consiste à fixer un corps convexe K de R^d, à y choisir n points aléatoires indépendants et uniformément distribués, et à en prendre l’enveloppe convexe K(n). L’asymptotique, pour d fixé et n tendant vers l’infini, du volume de K(n) a été reliée à l’analyse des corps flottants de K par Bárány et Larman dans les années 80. Certaines idées derrière ce lien ont été généralisées dans le “théorème de l’epsilon-net” prouvé par Haussler et Welzl au début des années 90.
Je donnerai une introduction à ces notions, avec l’idée d’aborder lors d’une éventuelle seconde séance, un travail commun avec Imre Bárány, Matthieu Fradelizi, Alfredo Hubard et Günter Rote sur la généralisation du lien polytope aléatoire/corps flottant au cas où la mesure uniforme sur K est remplacée par une mesure plus générale (https://doi.org/10.5802/ahl.44).
Skorokhod spaces and convergence of discontinuous processes.
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 15 May 2025 09:15-10:30 Lieu : Oratrice ou orateur : Virgile Brodu Résumé :What happens if we want to study the convergence of discontinuous real-valued stochastic processes, which is often the case for modelling purposes? For example, think of tracking the evolution of the population size of living species, where deaths are instantaneous negative jumps… In 1956, Skorokhod proposed a topology on the space of discontinuous functions, which is predominant today. The aim of this talk is to explain the simple and intuitive ideas underlying the construction of Skorokhod to facilitate its understanding, without going in the depth of technical proofs. If we have time, we will introduce measure-valued processes, with biological motivations, and explain how the Skorokhod construction can be generalized to more complex spaces such as these measure spaces.
Even if the present talk is self-contained, it can be seen as an introduction to the GdT of May, 22. I will also present my work about measure-valued processes during the GdT SIMBA of April, 24 (14h, Salle de Conférences). You are warmly welcome to attend one of these to discover some of my PhD research!
A result of convergence for measure-valued processes.
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 22 May 2025 09:15-10:30 Lieu : Oratrice ou orateur : Virgile Brodu Résumé :First, we introduce c`adl`ag measure-valued processes, with biological motivations. We focus on the
construction with Poisson point measures and the useful martingale properties it entails. Then, we
present a general convergence result for these measure-valued processes. We insist on the topological
difficulties encountered, related to Skorokhod spaces. Thus, even if it is self-contained, this talk can
be seen as a natural continuation of the GdT of May, 15.
Note that I also present this work during the GdT SIMBA on April, 24 (14h, Salle de Conf´erences),
with a focus on the new results we obtain compared to the existing literature. This is joint work with
Nicolas Champagnat and Coralie Fritsch
Pas presentations
Moyenne et Composantes Principales de séries temporelles, une nouvelle approche avec la méthode de la signature
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 1 February 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphael Mignot (IECL) Résumé :English version below: upon request the presentation can be in english, please let the speaker know a.s.a.p..
L’objectif de notre travail est double : établir un barycentre de séries temporelles multidimensionnelles et trouver des directions d’importance. Nous encodons les séries temporelles avec des intégrales de différents ordres de moments, constituant leur signature.
Tout d’abord, nous avons développé une approche pour calculer la moyenne des coefficients de signature. L’espace des coefficients de signature est une variété avec une structure de groupe mais sans métrique riemannienne bi-invariante, ce qui rend difficile l’utilisation d’approches Riemanniennes classiques.
Ensuite, dans le même esprit que la procédure de calcul de la moyenne, nous cherchons les géodésiques importantes. Importantes dans le sens où les coefficients de signature ont une variance maximale le long de ces géodésiques. Elles décrivent donc bien les données dans l’espace des coefficients de signature. Ces directions principales peuvent être utilisées pour une interprétation qualitative des données, mais aussi pour la réduction de dimension, comme on le fait avec l’analyse en composantes principales lorsqu’on analyse des données dans un espace Euclidien.
Title: Mean and Principal Components of time series, a new approach with the signature method.
Abstract: The aim of our work is twofold: average multidimensional time series and find directions of importance. We encode time series with integrals of various moment orders, constituting their signature.
First, we have developed an approach to average signatures coefficients. The space of signature coefficients is a manifold with a group structure but without a bi-invariant Riemannian metric, making it difficult to use classic Riemannian approaches.
Then, in the same spirit as in the averaging procedure, we look for important geodesics. Important in the sense that the signature coefficients have maximum variance along those. Thus, they describe well the data in the space of signature coefficients. Those main directions could be used for a qualitative interpretation of the data but also for dimension reduction, as it is done with the Principal Component Analysis when analyzing data in a Euclidean space.
Réunion d'équipe
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 18 January 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pascal Moyal Résumé :Le créneau du GDT est reservé pour une réunion d’équipe.
Quelle est la probabilité qu'une formule soit plus simple qu'une autre ?
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 7 December 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Mercuriali (IECL) Résumé :Je présente ici certains travaux que j’ai effectués lors de ma thèse sur les représentations efficaces de fonctions Booléennes, ainsi que certaines explorations probabilistes que j’ai menées par la suite. Nous pouvons définir une fonction Booléenne {0,1}^n -> {0,1} par sa table de vérité, ce qui est en général plus coûteux que d’en donner une formule, e.g., en forme normale disjonctive ou conjonctive. Je présenterai un cadre de travail général qui permet de comparer, en termes de coût, les différentes manières de définir ces formes normales. La comparaison de certaines formes normales est un problème ouvert. Afin d’y répondre, je présenterai une extension de ce cadre de travail pour étudier la distribution des tailles des formules Booléennes minimales, étant données des contraintes structurelles fortes.
Énumération de cartes et polynômes de Jack.
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 23 November 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Houcine Ben Dali (IECL et IRIF Paris) Résumé :Que se passe-t-il autour d'un vide extrême ? (II) Étude de la distribution aléatoire sur les polytopes décrivant les trous d'une percolation booléenne de très grand paramètre.
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 16 November 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémi Peyre Résumé :Cet exposé, bien que s’inscrivant dans la continuité de celui de la semaine dernière, devrait néanmoins pouvoir être suivi sans souci majeur même par ceux n’y ayant pas assisté.
La semaine dernière, nous avons motivé l’introduction d’une certaine distribution de probabilité P à valeurs dans les polytopes d-dimensionnels, distribution que nous avons introduite comme décrivant, en régime asymptotique, la forme des trous qui subsistent lorsqu’on procède à une « percolation booléenne » de très grand paramètre dans ℝd (ce qui consiste à jeter au hasard dans l’espace un très grand nombre de boules interpénétrables). Après avoir rappelé brièvement la description rigoureuse de P, cet exposé sera consacré à l’étude de ses propriétés.
La première question qui nous préoccupera consistera à simuler “directement” P : en effet, la définition que nous avons donnée la semaine dernière ne permettait pas de construire facilement la loi P, mais seulement la loi Q déduite de la précédente en la biaisant par le volume du polytope. Or il se trouve qu’il existe aussi un moyen de décrire P sans passer par une telle mesure biaisée : ce qui permet non seulement d’en faire des simulations, mais surtout de disposer d’une approche plus commode pour en étudier les propriétés ! Cela nous permettra notamment de déterminer le volume moyen des polytopes tirés selon P : quantité qui est directement liée à la densité des trous dans la percolation booléenne.
La question du nombre moyen d’hyperfaces des polytopes tirés selon P est quant à elle liée à l’« indice extrêmal » des cellules de Voronoï de grand circumrayon — je rappellerai ce que tout cela signifie. Je présenterai à ce sujet une idée nouvelle que j’ai eue il y a quelques mois, qui a permis de résoudre et de généraliser une conjecture émise par Pierre CALKA il y a une dizaine d’années : en dimension 2, le nombre moyen de côtés de notre polygone aléatoire vaut 4, et plus généralement en dimension d, le nombre d’hyperfaces du polytope vaut 2d 😀
Enfin, je présenterai quelques autres caractéristiques de la distribution P que je suis arrivé à calculer. Un phénomène remarquable semble se dessiner : pour toutes les valeurs de d et j où j’ai su mener les calculs à bien, le nombre moyen de j-faces du polytope aléatoire de dimension d se trouve être égal au nombre de j-faces du d-hypercube ! Je vous partage cette conjecture avec d’autant plus d’intérêt que je n’en ai pris conscience que le soir après mon premier exposé…! 😋
Que se passe-t-il autour d'un vide extrême ? (I)
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 9 November 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémi Peyre Résumé :Forme asymptotique des trous dans une percolation booléenne de grand paramètre
La mosaïque de Poisson-Voronoï est un objet classique en géométrie aléatoire : on jette des « germes » de façon poissonnienne dans l’espace euclidien ℝd ; et à chaque germe, on associe la « cellule » des points de l’espace situés plus près de lui que de n’importe quel autre germe. (Ce qui, au passage, donne lieu à de jolis dessins 😇). On peut alors chercher à comprendre les « phénomènes extrêmaux » d’un tel processus aléatoire, à savoir, répondre aux questions du type : lorsqu’une cellule possède un comportement extraordinaire, conditionnellement à cela, à quoi ressemble-t-elle ? Cette problématique a notamment été étudiée par Pierre CALKA et Nicolas CHENAVIER.
Ici nous nous intéressons aux cellules de très grand circumrayon, c’est-à-dire, les cellules dont une partie du bord est située à distance > R du germe pour un R très grand. L’existence d’une telle cellule est équivalente à dire qu’il y a dans l’espace une boule de rayon R entièrement vide de germes. Or, dans un tel cas, à ce vide sont toujours associées plusieurs (au moins d + 1) cellules de grand circumrayon. Mais combien au juste ? Il se trouve que, lorsqu’on fait tendre R vers l’infini, la loi du nombre de cellules dans un tel « agrégat » de cellules de grand circumrayon converge vers une limite qui n’est pas dégénérée (pour d > 1)… mais dont le comportement est encore mal compris !
Dans cette paire d’exposés, je vais raconter comment j’ai étudié cette loi-limite du nombre d’agrégats, via des objets géométriques aléatoires qui sont intéressants en tant que tels. L’étude de ces objets, ainsi que leur simulation, fait intervenir plusieurs idées intéressantes. Mon but ultime sera notamment de vous expliquer comment je suis parvenu à démontrer que l’espérance du nombre de cellules dans un agrégat (qu’on appelle, dans le jargon, « l’inverse de l’indice extrêmal ») vaut 2d, confirmant et généralisant une conjecture émise par P. Calka il y a une dizaine d’années.
Ce premier exposé sera plus spécifiquement consacré à l’étude asymptotique de la forme des zones situées à distance plus de R de tout germe : nous montrerons comment une renormalisation appropriée permet d’obtenir une convergence de cette forme vers une loi de probabilité non triviale, loi que nous définirons rigoureusement.
Réunion d'équipe
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 28 September 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pascal Moyal Résumé :La réunion d’équipe de la rentrée
Modèles individu-centrés en dynamique adaptative, comportement asymptotique et équation canonique : le cas des mutations petites et fréquentes.
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 21 September 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vincent Hass (IECL) Résumé :Le premier groupe de travail, un peu plus tôt que d’habitude. Voici le résumé.
International conference Informs APS 2023
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 29 June 2023 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Informs APS 2023 Résumé :Quand aura-t-on encore l’occasion d’accueillir à Nancy cette confèrence si renommé?
Alos nous ne pouvons pas la manquer 🙂
Le groupe de travail n’aura pas lieu pour vous permettre la participation à la confèrence qui se tiendra au Centre Prouvé.
Colloquinte
Catégorie d'évènement : Groupe de travail Probabilités et Statistique Date/heure : 15 June 2023 09:15-12:30 Lieu : Oratrice ou orateur : Irène Marcovici, Renaud Marty, Edouard Strickler, Koléhè Coulibaly-Pasquier Résumé :+ “Schéma de splitting pour une équation de Schrödinger non linéaire avec dispersion aléatoire” (Renaud Marty)
Nous considérons dans cet exposé une équation de Schrödinger non linéaire avec dispersion aléatoire. Ce terme de dispersion est un processus stochastique continu général qui peut être par exemple défini à partir d’un mouvement brownien fractionnaire.Nous étudions un schéma de splitting pour la résolution numérique de cette équation.Nous établissons des résultats sur l’ordre de convergence du schéma et montrons qu’il préserve l’asymptotique.
+ “Une extension probabiliste de la suite d’Oldenburger-Kolakoski” (Irène Marcovici)
La suite d’Oldenburger-Kolakoski est l’unique suite infinie sur l’alphabet {1,2} qui commence par un 1 et est un point fixe de l’application de codage par plage. Dans cet exposé, nous prendrons un peu de recul par rapport à cette suite bien connue et très étudiée, en introduisant de l’aléa dans le choix des lettres écrites. Cela nous permettra de montrer des résultats portant sur la convergence de la densité de 1 dans les suites ainsi construites. Dans le cas où les lettres sont choisies selon une suite i.i.d. de variables aléatoires ou selon une chaîne de Markov, la densité moyenne de 1 converge. De plus, dans le cas i.i.d., nous arrivons même à démontrer que la densité converge presque sûrement.
Il s’agit d’un travail réalisé en collaboration avec Chloé Boisson et Damien Jamet.
+ “Les convolutions de Bernoulli” (Edouard Strickler)
Prenez un nombre, mutlipliez-le par une constante a < 1, ajouter lui aléatoirement 1 ou – 1, et recommencez. Une chaîne de Markov ultra-simple ? et pourtant, elle cache de l’auto-similarité, des escaliers du diable, des nombres de Pisot, des résultats d’Erdös, une vallée de la mort, et son lot de mystères…
+ “Cutoff pour le mouvement Brownien sur les sphères“ (Koléhè Coulibaly-Pasquier)
Nous verrons comment l’entrelacement algébrique fait apparaître le flot de courbure moyenne stochastique renormalisé. Après couplage, entre le processus dual et le processus primal, nous présenterons la notion de temps fort stationnaire. Nous verrons qu’au temps ln(n)/n le mouvement Brownien sur la sphère S^(n+1) est brutalement proche (en séparation) de sa mesure invariante.C’est une série de travaux en collaboration avec Laurent Miclo, et Marc Arnaudon.