Upcoming presentations
Analyse d'un modèle simplifié pour la protection optimale d'un champ de culture.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 November 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aymeric Jacob De Cordemoy Résumé :Dans ce travail, nous étudions un problème de contrôle optimal impliquant un modèle simplifié pour la protection d’un champ de culture. Plus précisément, nous considérons une protection sur un champ de culture et cherchons à placer des zones d’intervention, représentées par un contrôle, afin de maximiser la protection sur le champ pendant une période donnée. En utilisant une méthode de relaxation, nous prouvons qu’il existe un contrôle qui maximise la protection et, de plus, ce contrôle doit être de type bang-bang. Par ailleurs, avec des hypothèses supplémentaires sur la géométrie du champ de culture, certains résultats sur la forme de l’intervention optimale sont démontrés en utilisant des résultats de comparaison via les symétrisations de Schwarz et de Steiner. Enfin, des simulations numériques sont réalisées pour illustrer ces résultats.
Antoine Detaille
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Detaille Résumé :Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 December 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives
Régularité d'un problème à frontière libre d'ordre 4
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.
C’est un travail en collaboration avec Jimmy Lamboley.
Past presentations
Instabilités paramétriques d'interfaces en rotation sinusoidale dans une cellule annulaire de Hele-Shaw
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 May 2018 10:45-11:45 Lieu : Oratrice ou orateur : Mohammed Souhar Résumé :L’étude de stabilité d’une interface séparant deux fluides non miscibles confinés dans une cellule de Hele-Shaw annulaire en rotation constante a fait l’objet de plusieurs travaux théoriques et expérimentaux. Les forces centrifuges, en présence d’une différence de densités entre les deux fluides donnent lieu a une instabilité de Rayleigh-Taylor avec des effets de viscosité. Le cas d’une rotation constante a été largement étudié et sans etre exhaustif on peut citer Schwartz (Phys.Fluids 1989), Miranda et al. (Phys. Rev. E 2000,2004,2017)……Le cas de la vitesse de rotation instationnaire a été très peu étudié. C’est pourquoi, nous avons entamé cette étude avec une vitesse de rotation sinusoidale dans lequel un écoulement pulsé généré par des forces d’entrainement résultant de la dépendance du temps de la rotation. On considère deux fluides newtoniens incompressibles non miscibles de densités et viscosités différentes confinés dans une cellule de Hele-Shaw annulaire soumise a un mouvement de rotation périodique sinusoidale et on s’intéresse a la stabilité de l’interface. Dans le cadre de l’approximation de Hélé-Shaw une solution analytique de base instationnaire a été trouvée. La solution de base perturbée a l’aide des méthodes classiques de la stabilité linéaire conduit a une équation de dispersion de type Mathieu. Equation qui permet de déterminer les zones d’instabilités dans le plan amplitude-fréquence de forcage pour un nombre d’onde azimutal donné. Les différents effets de la viscosité, de tension superficielle, de forces de Coriolis, et des forces d’inertie seront discutés. La résolution de l’équation de dispersion dans le cas général avec la méthode de Floquet est en cours et seul des résultats pour des cas particuliers (perturbations non visqueuses et effet de force de Coriolis négligeable) seront présentés. Ce travail est mené en collaboration avec Dr S. Aniss FS Ain Choc Casablanca.
Boundary value problems in domains with small holes close to the boundary
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 May 2018 10:45-11:45 Lieu : Oratrice ou orateur : Paolo Musolino Résumé :In this talk, we present some recent results on the analysis of singular perturbation problems in perforated domains. First, we will consider the asymptotic behavior of the solutions of a mixed problem for the Laplace equation in a domain with moderately close holes, i.e., with distance tending to zero “not faster” than the size. We describe what happens to the solutions in terms of real analytic maps and we compute asymptotic expansions, by an approach based on Potential Theory and Functional Analysis. Then we will show how our method can be exploited to analyze the influence of perforations approaching to a point of the boundary. First we will assume that the boundary is “flat” around the “singular” point. Then we will consider perforations concentrating around the vertex of a planar sector. The talk is based on joint works with V. Bonnaillie-No”el, M. Costabel, M. Dalla Riva, M. Dambrine, and M. Dauge.”
Efficient high order and domain decomposition methods for the time-harmonic Maxwell's equations
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 April 2018 10:45-11:45 Lieu : Oratrice ou orateur : Marcella Bonazzoli Résumé :The time-harmonic formulation of Maxwell’s equations presents several difficulties when the frequency is large. Here we propose a precise and efficient solution strategy that couples high order finite element discretizations with domain decomposition preconditioners. Finite elements suited for the approximation of the electric field are the curl-conforming (or edge) finite elements. Here, we revisit the classical degrees of freedom defined by Nédélec, in order to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between degrees of freedom and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source domain specific language FreeFem++. In the second part, we focus on the preconditioning of the system resulting from the finite element discretization. In particular we investigate how two-level domain decomposition preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance.
Contrôle optimal pour un problème de pollution en sous-sol
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 April 2018 10:45-11:45 Lieu : Oratrice ou orateur : Éloïse Comte Résumé :Ce travail s’inscrit dans un contexte de contrôle de la pollution d’origine agricole des ressources en eau, en alliant modélisation économique et hydrogéologique. Pour cela, nous définissons d’une part un objectif économique spatio-temporel prenant en compte le compromis entre l’utilisation d’engrais et les coà»ts de dépollution. D’autre part, nous décrivons le transport du polluant dans le sous-sol (3D en espace) par un système non linéaire d’équations aux dérivées partielles couplées de type parabolique (réaction-convection-dispersion) et elliptique dans un domaine borné. Des résultats génériques sont donnés (cf. [Augeraud-Véron, Choquet, Comte : JOTA 2017]) et le cas particulier des faibles concentrations est traité, cas pour lequel un résultat d’unicité est démontré par analyse asymptotique (cf. [Augeraud-Véron, Choquet, Comte : ESAIM COCV, à paraitre]) Ì. Quelques résultats numériques (2D en espace) illustreront ces résultats analytiques. Ces derniers pourront être élargis au cadre de la théorie des jeux, o๠plusieurs joueurs interviennent, avec notamment un résultat d’existence d’un équilibre de Nash.
Justification d'une équation de Zakharov linéaire en turbulence d'onde pour un système Hamiltonien stochastique.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 March 2018 10:45-11:45 Lieu : Oratrice ou orateur : Erwan Faou Résumé :On considère un système semi-linéaire d’interaction à trois ondes posée sur un grand tore, avec nonlinéarité petite et forçage stochastique en angle des coefficients de Fourier. Ce système possède des mesures invariantes naturelles. Dans un certain régime asymptotique (taille du tore tendant vers l’infini, taille de la nonlinéarité tendant vers zéro et taille du forçage tendant vers zéro), on montre que dans un régime linéarisé autour des mesures invariantes, les fluctuations des modules des coefficients de Fourier convergent vers les solutions d’équations de Zakharov linéarisées apparaissant en théorie de turbulence d’ondes.
Quelques problèmes variationnels planaires sur les compacts connexes et leur approximation
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 March 2018 10:45-11:45 Lieu : Oratrice ou orateur : Antoine Lemenant Résumé :Dans cet exposé je présenterai une classe de problèmes variationnels classiques ou moins classiques de type « optimisation de forme » sur les compacts connexes 1-dimensionnels du plan. Je m’intéresserai tout particulièrement à leur approximation dite « par champ de phase », qui abouti à une méthode numérique. La nouveauté étant de pouvoir contraindre la connexité dans l’ensemble optimal trouvé. L’étude de la fonctionnelle d’approximation est elle même intéressante, car reliée à une equation de type Allen-Cahn avec terme source singulier (i.e. mesure de Hausdorff).
Approximation de surface et varifolds
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 March 2018 10:45-11:45 Lieu : Oratrice ou orateur : Blanche Buet Résumé :Les varifolds sont une notion de surface généralisée introduite par Almgren en 1965 anfin d’étudier les points critiques de la fonctionnelle d’aire. Comme la plupart des concepts développés en théorie géométrique de la mesure, l’utilisation des varifolds a longtemps été dédiée à l’étude théorique de problèmes variationnels géométriques. Cependant, la souplesse de ces concepts constitue un véritable avantage en ce qui concerne l’étude des surfaces discrètes : il est possible de munir d’une structure de varifold les surfaces classiques mais aussi la plupart des surfaces discrètes (nuages de points, approximations volumiques, triangulations etc.), ce qui permet d’étudier objets discrets et continus dans un même espace. J’expliquerai comment ce cadre nous a permis de définir une notion de courbure discrète unifiée (puis de seconde forme fondamentale) possédant de bonne propriétés de convergence et reposant uniquement sur la structure de varifold. Des calculs numériques effectués sur des nuages de points illustreront cette approche. Il s’agit d’un travail en collaboration avec G.P. Leonardi (univ. Modena e Reggio Emilia) et S. Masnou (Univ. Lyon).
Soap bubbles in some sub-Riemannian spaces
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Valentina Franceschi Résumé :The aim of this seminar is to present some results about minimal bubble clusters in some sub-Riemannian spaces. This amounts to find the best configuration of $min mathbb N$ regions in a manifold enclosing given volumes, in order to minimize their total perimeter. In a $n$-dimensional sub-Riemannian manifold, the perimeter is a non-isotropic $(n-1)$-dimensional measure that is defined according to the geometry. After an introduction to the subject, we will present some results concerning the cases $m=1$ (isoperimetric problem) and $m=2$ (double bubble problem), in a class of sub-Riemannian structures connected to the Heisenberg geometry. This is the framework of an open problem about the shape of isoperimetric sets, known as Pansu’s conjecture. We start by presenting the isoperimetric problem in Grushin spaces and Heisenberg type groups, under a symmetry assumption that depends on the dimension (based on joint work with R. Monti, University of Padova). We conclude by showing some recent results in collaboration with Giorgio Stefani (SNS, Pisa) concerning the double bubble problem in the Grushin plane.
Densité en GSBD et approximation d'énergie de rupture fragile
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Vito Crismale Résumé :The seminar concerns the approximation à la Ambrosio-Tortorelli of the Griffith energy functional for brittle fracture. While the Griffith energy depends on the n-1 dimensional discontinuity set of any function, the approximating energies are elliptic functionals (depending on a further emph{phase field} variable) so more convenient to minimise by Numerical Analysis techniques. For this reason this phase field approximation is employed in a large number of Mechanical works. The result applies to the Dirichlet minimisation problem and follows from a sharp density result in the energy space for the Griffith functional, that can be applied in other situations, e.g. to prove different approximations of Griffith energy.
Conditions suffisantes pour le contrôle frontière d'une équation des ondes avec une condition de transmission
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Ludovick Gagnon Résumé :L’équation des ondes avec une condition de transmission modélise la propagation d’ondes dans des milieux différents avec des vitesses de propagation différentes. à€ l’interface de ces milieux, la condition de transmission est équivalente, pour les rayons, à la loi de Snell-Descartes. Un rayon incident à l’interface peut donc être réfléchi dans le milieu d’o๠il provient et transmis dans l’autre milieu. La difficulté du problème d’observabilité de cette équation repose sur le fait que la condition de contrôle géométrique n’est plus suffisante. En effet, des interférences entre des rayons transmis et réfléchis peuvent survenir à l’interface de sorte qu’un rayon observé dans la région d’observation ne donne pas suffisamment d’informations sur le rayon initial. Dans cet exposé nous présenterons des conditions géométriques suffisantes pour l’observabilité frontière de l’équation des ondes avec une condition de transmission. Nous introduirons une construction géométrique permettant d’analyser systématiquement la propagation des rayons provenant de l’interface.