Upcoming presentations
Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.
Travail en collaboration avec Hannes Kern (TU Berlin).
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pei Su (Université d'Orsay)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pei Su (Université d'Orsay) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Jérôme Le Rousseau (Université Paris Nord)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :Past presentations
Système fluide-structure avec conditions de bord sur la pression
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Jean-Jérôme Casanova Résumé :Dans cet exposé je souhaite présenter un résultat d’existence de solutions fortes, locales en temps, pour un système fluide-structure avec conditions de bord mixtes. Le fluide est décrit par les équations de Navier-Stokes incompressibles en dimension 2 dans un domaine de type rectangulaire. La partie supérieure du domaine est une membrane dont le déplacement satisfait une équation d’Euler-Bernoulli amortie. Le résultat est donné sans aucunes hypothèses de petitesse sur les données initiales. Je conclurai en évoquant l’existence de solutions périodiques en temps pour ce système.
Entire solutions of the Allen-Cahn-Nagumo equation
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Hirokazu Ninomiya Résumé :When several stable states coexist, propagation phenomena are often observed in many fields including dissipative situations. To characterize the universal profiles of these phenomena, traveling wave solutions and entire solutions play important roles. Here traveling wave solution is meant by a solution of a partial differential equation that propagates with a constant speed, while it maintains its shape in space, and an entire solution is a solution defined for all space and time variables. In this talk we focus on the Allen-Cahn-Nagumo equation, which is a single reaction diffusion equation with bistable nonlinearity and explain how to construct entire solutions and the relation between traveling wave solutions and entire solutions.
Approximation de fonctions avec peu de saut et existence de minimiseurs forts de Griffith en dimension n
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Flaviana Iurlano Résumé :On preuve que les fonctions spéciales à déformation bornée avec peu de saut sont proches dans le sens de l’énergie à des fonctions qui sont régulières dans un domaine plus petit. Cela permet de généraliser l’inégalité de monotonie de De Giorgi, Carriero et Leaci au contexte linéarisé en dimension n et d’établir la fermeture de l’ensemble de saut pour les minimiseurs de l’énergie de Griffith.
Hyperbolic solutions to Bernoulli's free boundary problem
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 December 2017 10:45-11:45 Lieu : Oratrice ou orateur : Michiaki Onodera Résumé :Bernoulli’s free boundary problem is an overdetermined problem in which one seeks an annular domain such that the capacitary potential satisfies an extra boundary condition. There exist two different types of solutions: elliptic and hyperbolic solutions. Elliptic solutions are “stable” solutions and tractable by variational method and maximum principle, while hyperbolic solutions are “unstable” solutions of which the qualitative behavior is less known. I will present a recent joint work with Antoine Henrot in which we show the qualitative behavior of hyperbolic solutions by a new flow approach.
Sur la géométrie des oeufs de branchiopodes
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alexandre Delyon Résumé :On veut expliquer la forme des oeufs d’eulimnadia, petit animal vivant dans des mares éphémères, en utilisant les outils de l’optimisation de forme. En effet, la théorie de l’évolution laisse penser que la forme des objets que l’on retrouve dans la nature résulte d’un processus d’optimisation, c’est à dire que leur forme est telle que l’objet en question est le plus à même de résister aux contraintes qui s’exercent sur lui. On propose un critère naturel optimisé par la forme de l’oeuf, que l’on modélise mathématiquement par un problème de minimisation de fonctionnelle de forme s’écrivant comme combinaison convexe du rayon intérieur, du diamètre et de la densité, notion que l’on définira. On présente le travail réalisé jusqu’à présent.
Global exact controllability of the bilinear Schroedinger potential type models on compact quantum graphs
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alessandro Duca Résumé :Let us consider the bilinear Schr”{o}dinger equation $ipartial_t psi(t)=Apsi(t)+u(t)Bpsi(t)$ in $L^2(G,mathbb C)$ for $G$ a compact quantum graph. We assume $B$ a bounded symmetric operator, $u$ a control function and $psi^0$ is the initial state of the system. The operator $A=-Delta$ is the Laplacian equipped with self-adjoint type boundary conditions into the vertices of the graph. Provided the well-posedness of the equations, we present assumptions on $B$ and on the spectrum of $A$ implying the global exact controllability in suitable subspaces of $mathcal H$. When the previous assumptions fail, we introduce a weaker notion of controllability allows to provide interesting results also when the graph $G$ is a complex structure and we are not able to verify the spectral assumptions for the global exact controllability.”
Quantum Mean Field Asymptotics and Multiscale Analysis
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Sébastien Breteaux Résumé :Joint work with Z. Ammari, and F. Nier. In this work, we study how multiscale analysis and quantum mean field asymptotics can be brought together. In particular we study when a sequence of one-particle density matrices has a limit with two components: one classical and one quantum. The introduction of “separating quantization for a family” provides a simple criterion to check when those two types of limit are well separated. We give examples of explicit computations of such limits, and how to check that the separating assumption is satisfied.
A propos de la contrôlabilité de $y_t - epsilon y_{xx} + M y_x =0$ lorsque $epsilon$ tend vers 0
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 November 2017 10:45-11:45 Lieu : Oratrice ou orateur : Arnaud Munch Résumé :Nous discutons dans cet exposé de la limite du cout du controle a zero de l’equation d’advection-diffusion $y_t-epsilon y_{xx}+ M y_x=0$ lorsque le paramètre $epsilon$ tend vers $0$. Cette limite dépend fortement du temps de contrôlabilité et du signe de M. A travers quelques remarques de nature théoriques et numériques, nous montrons à quel point ce problème de contrôlabilité est singulier. Nous discutons notamment l’analyse asymptotique de l’équation.
Une approche lagrangienne pour des systèmes 1d sous contrainte
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 October 2017 10:45-11:45 Lieu : Oratrice ou orateur : Charlotte Perrin Résumé :Résumé
Méthodes numériques d'ordre uniforme pour des problèmes d'évolution hautement oscillants.
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 October 2017 10:45-11:45 Lieu : Oratrice ou orateur : Mohammed Lemou Résumé :Nous présentons deux approches différentes pour construire des méthodes numériques pour les problèmes hautement oscillants, dont la précision est uniforme par rapport à la fréquence d’oscillation. On parle dans ce cas de schémas UA (uniformly accurate). Une première méthode UA consiste à séparer les variables rapide et lente, en rajoutant de façon adéquate une variable supplémentaire au modèle. Une deuxième méthode UA est basés sur une décomposition micro-macro qui reformule le problème en une équation moyennée à différents ordres en la fréquence, couplée à une équation micro satisfaite par le reste. Les propriétés de régularité uniforme par rapport à la fréquence dont jouissent ces deux reformulations, permettent l’utilisation des méthodes numériques usuelles avec un ordre de précision indépendant de la fréquence des oscillations. Des applications en théorie cinétique (Vlasov avec Champ magnétique fort) et en mécanique quantique (Klein-Gordon et limite non-relativiste) seront présentées.