PDE and applications seminar | Metz

Upcoming presentations

Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (1/2)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :

Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (2/2)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :

Groupe de Travail : Titre à venir (brouillon)

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 February 2025 10:45-12:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Tillmann Wunzbacher Résumé :

Attention : horaires inhabituels, le séminaire aura lieu de 10h45 à 12h15 (une séance d’une heure et demie) et sera précédé d’une pause café-gâteau de 10h15 à 10h45


Séminaire : Titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Gaudiello (Università della Campania “L. Vanvitelli”) Résumé :

Séminaire : Titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Olivier Guibé (Université de Rouen) Résumé :

Abonnement iCal

Past presentations

Contrôle et stabilisation de l'équation d'Euler à surface libre

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 3 February 2017 11:00-12:00 Lieu : Oratrice ou orateur : Thomas Alazard Résumé :

L’équation d’Euler à surface libre régit la dynamique de l’interface séparant l’air d’un fluide parfait incompressible. Cet exposé concerne l’étude de la contrôlabilité et de la stabilisation de cette équation. Le but est de comprendre la génération ainsi que l’amortissement des vagues dans un bassin à houle. Ces deux probl èmes seront abordés par des méthodes différentes : analyse microlocale pour la contrôlabilité, et étude de quantités globales pour la stabilisation (méthode des multiplicateurs, identité de Pohozaev, formulations hamiltonienne et lagrangienne des équations, lois de conservation, etc.).


Inversion de données en traitement du signal et des images : régularisation parcimonieuse et algorithmes de minimisation l0

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 27 January 2017 11:00-12:00 Lieu : Oratrice ou orateur : Charles Soussen Résumé :

Dans la première partie de l’exposé, je présenterai différents problèmes inverses auxquels je me suis intéressé ces dernières années et les contextes applicatifs associés : reconstruction d’images en tomographie, analyse d’images biologiques et d’images hyperspectrales en microscopie, problèmes d’inversion de données en spectroscopie optique avec applications biomédicales. Lorsque les données disponibles sont en nombre limité et partiellement informatives sur la quantité à estimer (problèmes inverses mal posés), la prise en compte d’informations a priori sur les inconnues est indispensable, et s’effectue par le biais des techniques de régularisation. Dans la seconde partie de l’exposé, je présenterai plus particulièrement la régularisation parcimonieuse de problèmes inverses, basée sur la minimisation de la “norme” l0. Les algorithmes heuristiques proposés sont conçus pour minimiser des critères mixtes L2-L0 du type $$min_x J(x;lambda) = || y – Ax ||_2^2 + lambda || x ||_0.$$ Ce problème d’optimisation est connu pour être fortement non-convexe et NP-difficile. Les heuristiques proposées (appelées algorithmes “gloutons”) sont définies en tant qu’extensions d’Orthogonal Least Squares (OLS). Leur développement est motivé par le très bon comportement empirique d’OLS et de ses versions dérivées lorsque la matrice A est mal conditionnée. Je présenterai deux types d’algorithmes pour minimiser $J(x;lambda)$ à $lambda$ fixé et pour un continuum de valeurs de $lambda$. Finalement, je présenterai quelques résultats théoriques visant à garantir que les algorithmes gloutons permettent de reconstruire exactement le support d’une représentation parcimonieuse $y = Ax^*$, c’est-à-dire le support du vecteur $x^*$.


Analyse asymptotique d'un problème de Neumann dans un domaine avec point de rebroussement: application au problème des collisions de solides dans un fluide

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 20 January 2017 11:00-12:00 Lieu : Oratrice ou orateur : Alexandre Munnier Résumé :

Dans ce travail, nous étudions un problàƒÂ¨me de collision entre un solide rigide immergé et la paroi de la cavité dans laquelle il se trouve. Nous sommes amenés àƒÂ  considérer le comportement asymptotique de la solution d’un problàƒÂ¨me de Neumann (et de l’énergie de Dirichlet associée) lorsque le domaine devient singulier (apparition d’un point de rebroussement). Conformément àƒÂ  l’intuition que l’on peut avoir, le comportement diffàƒÂ¨re suivant le profil du solide (plus ou moins “aplati” au niveau du point de contact).


Titre à  préciser

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 January 2017 11:00-12:00 Lieu : Oratrice ou orateur : Nicolas Popoff Résumé :

Résumé à  préciser


Sur l'équation des ondes dans les domaines fracturés

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 December 2016 11:00-12:00 Lieu : Oratrice ou orateur : Ilaria Lucardesi Résumé :

Dans cet exposé je vous présenterai des résultats récents, en collaboration avec G. Dal Maso, concernant un problème de propagation dynamique de fractures. Dans le cas anti-plan, lorsque la fissure croît sur une variété prescrite et régulière, on démontre existence, unicité, et dépendance continue par rapport aux données de la fonction déplacement.


Sur le lemme de Lions et ses relations avec d'autres théorèmes d'analyse fonctionnelle

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 December 2016 11:00-12:00 Lieu : Oratrice ou orateur : Cristinel Mardare Résumé :

Un modèle de dynamique des populations piloté par capacité biotique

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 4 November 2016 11:00-12:00 Lieu : Oratrice ou orateur : Léonard Monsaingeon Résumé :

Dans cet exposé je présenterai un modèle de dynamique des populations piloté par capacité biotique. La capacité biotique $f=rho-m$, qui est essentiellement la différence entre la densité d’espèce $rho(t,x)$ et la quantitié de ressources disponibles $m(x)$, intervient comme un terme de reproduction logistique, mais affecte également la dispersion de l’espèce qui se déplace vers l’environnement le plus favorable possible ($f>0$). Le modèle a été introduit et étudié mathématiquement par [Cosner et Winkler], et consiste en un problème parabolique dégénéré. Dans une série de travaux récents, nous avons montré avec S. Kondratyev et D. Vorotnikov (Univ. Coimbra, Portugal) que le modèle peut s’écrire comme un flot gradient dans l’espace des mesures, muni d’une nouvelle distance de transport optimal non conservatif. Ce point de vue revisité permet d’établir un nouveau résultat de convergence en temps long, dont la preuve est basée sur des techniques d’entropie/dissipation-entropie particulièrement adaptées au cadre variationnel et en lien avec une nouvelle famille d’inégalités fonctionnelles. Si le temps le permet je présenterai une extension au cas vectoriel.


Front d'onde des états "in" et "out" pour champs de Klein-Gordon sur espaces-temps asymptotiquement statiques

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 October 2016 11:00-12:00 Lieu : Oratrice ou orateur : Michal Wrochna Résumé :

En théorie des champs relativiste, un problème essentiel est de séparer les solutions de l’équation de Klein-Gordon en celles qui propagent avec fréquences positives et celles a fréquences négatives, dans le sens précis d’une condition sur leur front d’onde. Sur des espace-temps asymptotiquement statiques, il existe une construction bien connue (par théorie de diffusion) qui donne une décomposition canonique, mais jusqu’à  présent le problème de vérifier la condition sur le front d’onde, dite “de Hadamard”, restait ouvert. Le but de cet expose seront des démontrer cette conjecture dans le cas à  longue portée en utilisant un mélange de théorie de diffusion et de calcul pseudo-différentiel. Je vais aussi expliquer comment dans ce cadre est-il possible de définir des conditions asymptotiques pour lesquelles l’opérateur de Klein-Gordon devient un opérateur de Fredholm vérifiant des propriétés étonnamment similaires au cas elliptique (travail en collaboration avec Christian Gérard).


Quelques aspects des équations de Kuramoto-Sivashinsky

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 7 October 2016 11:00-12:00 Lieu : Oratrice ou orateur : Saïd Benachour Résumé :

Opérateurs de Schrödinger presque homogènes

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 September 2016 11:00-12:00 Lieu : Oratrice ou orateur : Serge Richard Résumé :

Durant ce séminaire nous considérerons une famille d’opérateurs de Schrödinger étant formellement homogènes sous le groupe des dilatations. Une fois mieux définis la majorité de ces opérateurs perdent cette propriété. Nous étudierons alors les propriétés spectrales de ces opérateurs, qui ne sont généralement pas auto-adjoints et proposerons certaines formules pour la théorie de la diffusion. Cette étude est intimement liée aux fonctions de Bessel, et certaines de leurs relations peuvent être réinterprétées dans le cadre de l’étude de ces opérateurs.


8 9 10 11 12 13 14 15 16 17 18 19