Séminaire Géométrie

Exposés à venir

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 janvier 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 février 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 mars 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 mai 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 juin 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 juillet 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Archives

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 8 septembre 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Auguste Hébert Résumé :

Vers une connectification des immeubles supérieurs

Soit $G$ un groupe réductif déployé sur un corps réellement valué, par exemple $G=SL_n(F)$, où $F=k((t))$ pour $n$ un entier naturel et $k$ un corps. Afin d’étudier un tel groupe, Bruhat et Tits lui ont associé un objet de nature géométrico-combinatoire $I(G)$, appelé immeuble de Bruhat-Tits, sur lequel $G$ agit. On peut alors étudier $G$ via son action sur $I(G)$ et transformer une question de nature algébrique en une question plus géométrique. Par exemple si $G=SL_2(k((t)))$, où k est un corps, son immeuble est un arbre homogène de valence $|k|+1$.

Soit maintenant $F$ un corps muni d’une valuation quelconque, c’est à dire non forcément réelle. On peut par exemple prendre $F=k((t_1))((t₂))…((t_m))$, où m est un entier naturel, qui est naturellement muni d’une valuation à valeurs dans $\mathbb{Z}^m$. Afin d’étudier des groupes réductifs déployés sur de tels corps, Bennett a introduit dans les années 90 une notion d’immeubles supérieurs qui généralise la notion d’immeubles de Bruhat-Tits. Avec Izquierdo et Loisel, nous avons associé à un tel groupe un immeuble supérieur, généralisant ainsi la construction de Bruhat et Tits. Lorsque la valuation est à valeurs réelles, l’immeuble de Bruhat-Tits est connexe et contractile, ce qui permet d’appliquer des techniques de topologie algébrique pour étudier le groupe. En revanche, lorsque la valuation n’est pas réelle (par exemple si $m\geq 2$), l’immeuble n’est pas connexe. Afin de généraliser certains résultats connus pour des valuations réelles, il semble donc utile de « connectifier » l’immeuble c’est à dire de rajouter des points pour le rendre connexe. Je parlerai d’avancées dans cette direction, obtenues avec Bravo, Izquierdo et Loisel.


Séminaire Commun - Homotopies Stables de la Sphère

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 juillet 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :
 1) Exposé introductif :
   – Titre : Groupes d’homotopie stable de la sphère
   – Résumé : Après avoir rappelé les groupes d’homotopie (stable) de la sphère, j’établirai un lien entre le dernier avec les structures différentielles exotiques sur les sphères topologiques. L’invariant de Kervaire entre alors en jeu. Je terminerai cet exposé avec la suite spectrale d’Adams qui est un outil important pour calculer les groupes d’homotopie stable.
2) Exposé spécialisé :
  – Titre : Théorie d’homotopie stable chromatique
  – Résumé : La théorie d’homotopie chromatique introduit une filtration sur les groupes d’homotopie stable via la localisation de Bousfield par les E-théories homologiques de Morava à l’image de la filtration des groupes formels via leurs hauteurs. Les calculs des strates de cette filtration qui sont plus abordables que le calcul direct des groupes d’homotopie stable permettent de détecter des familles infinies d’éléments de ces derniers. Je commencerai l’exposé par une introduction à la théorie générale, puis parlerai des avancés dans le calcul du deuxième niveau de la filtration chromatique et pour finir, expliquerai des applications dans la détection des structures exotiques sur les sphères.

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 juin 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 mai 2025 14:00-16:00 Lieu : Oratrice ou orateur : Matthieu Romagny Résumé :

Géométrie birationnelle des groupes algébriques en caractéristique p>0

(Première partie) Cet exposé portera sur l’étude des familles G ⟶ S de groupes algébriques paramétrées par des variétés algébriques S de caractéristique p>0. Je commencerai l’exposé en expliquant quelques conséquences, pour l’étude des groupes algébriques, de l’existence du morphisme de Frobenius. La géométrie birationnelle est l’étude des différents prolongements possibles d’une famille fixée paramétrée par les points d’un ouvert dense U de S. J’expliquerai la signification de cette étude birationnelle pour la connaissance de toutes les familles. Dans ce contexte, les éclatements de Néron (aussi appelés dilatations) sont l’outil clé pour fabriquer de nouveaux prolongements. Je les présenterai ainsi que quelques développements très récents.
(Deuxième partie) Je me concentrerai ensuite sur le cas des groupes finis et illustrerai les problèmes spécifiques à ce cas. J’introduirai l’espace de modules des prolongements d’une famille fixée, qui est une ind-variété. Enfin j’énoncerai un résultat d’existence de dilatations dans ce cadre.
L’exposé comportera de nombreux exemples.
Il s’agit de résultats obtenus en collaboration avec A. Mayeux et T. RIcharz, ainsi que de travaux d’Alice Bouillet.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 avril 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie - invariants motiviques des applications birationnelles

Catégorie d'évènement : Séminaire Géométrie Date/heure : 17 mars 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hsueh-Yung Lin Résumé :
(Travaux en commun avec E. Shinder) Nous commençons par rappeler la notion d’application birationnelle des variétés algébriques et présenter quelques questions naturelles sur les groupes de Cremona. Nous introduisons ensuite des invariants de nature motivique associés aux applications birationnelles et expliquons leurs résultats fondamentaux. Nous utilisons ces invariants motiviques pour démontrer, entre autres conséquences, la non-simplicité de la plupart des groupes de Cremona. Si le temps le permet, nous discuterons des raffinements de ces invariants, notamment un raffinement universel dans les groupes de Grothendieck des paires.
Cet exposé ne suppose aucune connaissance préalable en géométrie algébrique.

Séminaire commun de géométrie - cohomologie galoisienne et conjecture de Serre II

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 mars 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :

Théorèmes de transfert pour la cohomologie galoisienne et conjecture de Serre II

La première partie de l’exposé sera consacrée à une présentation générale et accessible de la conjecture de Serre II, prédisant l’existence de points rationnels sur des torseurs sous certains groupes linéaires quand on travaille sur des corps de petite dimension cohomologique.

Dans la deuxième partie, je parlerai d’un travail récent avec Giancarlo Lucchini Arteche dans lequel on démontre notamment que la conjecture pour les corps de caractéristique nulle implique la conjecture pour les corps de caractéristique quelconque. Ce résultat repose notamment sur quelques théorèmes de transfert pour la dimension cohomologique des corps que j’énoncerai et expliquerai.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 février 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Extension of Differential Forms, Uniformization, Miyaoka-Yau inequalities and the topological characterization of certain klt varieties (with Daniel Greb and Thomas Peternell)

The first part of this overview talk begins with a non-technical overview of minimal model theory, explaining why any classification theory of complex-projective manifolds always needs to consider singular varieties. The talk describes the relevant singularities in brief, mentions methods that have been developed to study them and will ideally convey an idea what classification results one might hope to expect.

The second part describes some of the theory that has been developed over the last years and mentions some of the more concrete applications.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 janvier 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 décembre 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Formalisme thermodynamique à basse température, dynamique symbolique et quasi-cristaux

L’étude de modèles simples de physique statistique sur le réseau $\mathbb{Z}^d$, visant à comprendre la transition du désordre vers un ordre périodique ou quasi-périodique quand la température est suffisamment basse, nécessite une interconnexion entre le formalisme des mesures de Gibbs et des états d’équilibre, la dynamique symbolique multidimensionnelle, les pavages et l’informatique théorique. En particulier, des espaces associés aux marginales finies-dimensionnelles des mesures invariantes par décalage apparaissent et possèdent une étonnante richesse. Cet exposé se propose de présenter un panorama introductif de ce domaine de recherche.


1 2 3 4 5 6 7