Exposés à venir
Archives
Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 mai 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 avril 2024 14:00-16:00 Lieu : Oratrice ou orateur : Giuseppe Ancona Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 mars 2024 14:00-16:00 Lieu : Oratrice ou orateur : Sébastien Boucksom Résumé :Métriques kählériennes canoniques et éclatements
L’existence de métriques kählériennes canoniques (Kähler-Einstein, à courbure scalaire constante, etc…) dans une classe de cohomologie donnée d’une variété kählérienne compacte admet une formulation variationnelle comme équation d’Euler-Lagrange de certaines fonctionnelles. Grâce aux travaux profonds de Darvas-Rubinstein et Chen-Cheng, on sait que de plus qu’elles admettent des points critiques (donc des métriques canoniques) ssi elles satisfont une condition de croissance linéaire. Après avoir passé en revue ces objets fondamentaux, j’expliquerai comment cette caractérisation permet de généraliser des travaux d’Arezzo-Pacard et Seyyedali-Szekelyhidi portant sur la stabilité de telles métriques par éclatement de la variété. Il s’agit d’un travail en collaboration avec Mattias Jonsson et Antonio Trusiani.
Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 janvier 2024 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 décembre 2023 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Résumé :Mini-cours "Syzygies and Hilbert schemes"
Catégorie d'évènement : Géométrie Date/heure : 4 décembre 2023 10:30-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Daniele Agostini (Tübingen) Résumé :Séminaire commun de géométrie - Cônes de diviseurs sur $\mathbb{P}^3$ éclaté en $8$ points très généraux
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 6 novembre 2023 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Zhixin Xie Résumé :Soit $X$ l’éclatement de $\mathbb{P}^3$ en $8$ points très généraux. Alors $X$ est une variété projective lisse dont le diviseur anticanonique est nef mais non semiample.
Dans cet exposé, on donne une description explicite sur le cône nef et le cône pseudoeffectif de $X$. De plus, on montre qu’un certain groupe de Weyl agit sur le cône mobile effectif de $X$ avec un domaine fondamental rationnel polyhédral. Il s’agit d’un travail en collaboration avec Isabel Stenger.