Probabilities and Statistic seminar

Upcoming presentations

Workshop "Singular SPDEs, invariant measures and discrete models"

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 4 December 2024 - 6 December 2024 00:00-23:59 Lieu : Salle de conférences Nancy Oratrice ou orateur : Organisé par Yvain Bruned Résumé :

Planning, titres et résumés ici.


Perfect simulation of the invariant laws of Markovian load-balancing queueing networks

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 12 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carl Graham (Polytechnique) Résumé :

We define a wide class of Markovian load balancing queueing networks, including classic networks studied in the lively literature on the subject. Each network has identical single-server infinite-buffer queues and implements a load balancing policy to allocate each task at its arrival and possibly reallocate it at service completions. The purpose of the policy is to optimize server utilization under constraints such as limited information, real-time decision taking, and network topology. The queue length process is not necessarily exchangeable. The invariant law is in general not known even up to normalizing constant. We provide perfect simulation methods in view of Monte Carlo estimation of quantities of interest in equilibrium, for instance for performance evaluation. In this infinite multi-dimensional state space, we use an unusual preorder defining an order up to permutation of the coordinates, define a coupling in which networks in this class are dominated by the network with uniform routing, and implement dominated coupling from the past methods.

[The talk will be in French, but slides will be in English.]


Lucas Teyssier

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 19 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas Teyssier (Vancouver) Résumé :

David Dereudre

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 9 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Dereudre (Université de Lille) Résumé :

Carlo Bellingeri

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 January 2025 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

(Exceptionnellement, le séminaire aura lieu à Metz et sera diffusé en visio en salle de conférence à Nancy.)


Thibault Lemoine

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 23 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thibault Lemoine (Collège de France) Résumé :

Benoît Nieto

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Nieto (École Polytechnique) Résumé :

Ed Cohen

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 April 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ed Cohen (Imperial College, London)) Résumé :

Bruno Ebner

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 15 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Ebner (Karlsruher Institut für Technologie) Résumé :

Abonnement iCal

Past presentations

Une méthode « sans grille » pour la reconstruction d'images

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 17 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vincent Duval (INRIA Paris) Résumé :

Ces dernières années, les méthodes de reconstruction avec a priori de parcimonie (LASSO, Basis Pursuit), très utilisées en statistiques comme en traitement d’images, ont été adaptées pour opérer sur un domaine continu (Beurling Minimal extrapolation, Beurling-LASSO…): on reconstruit alors une somme de masses de Dirac plutôt qu’un vecteur parcimonieux.
Le fait de travailler sur un domaine continu apporte de nombreux avantages: absence de grille de reconstruction et des artefacts de discrétisation associés, analyse plus simple, et algorithmes tirant parti de la structure lisse du problème.

Dans cet exposé, nous nous proposons d’étendre cette démarche à la reconstruction d’objets plus complexes: plutôt que des sources ponctuelles, on veut reconstruire des images constantes par morceaux à l’aide de la régularisation par variation totale du gradient (comme dans les travaux de Rudin, Osher et Fatemi).
Nous montrons qu’en étudiant la boule unité associée, on peut décrire la structure des minimiseurs et définir un algorithme de type Frank-Wolfe « sans grille » pour la résolution du problème.
L’avantage d’une telle méthode est la préservation des bords et l’isotropie des solutions.

Il s’agit d’un travail commun avec Romain Petit et Yohann De Castro.


Les modèles de processus ponctuel spatiotemporels avec marques extrêmes : une application aux feux de forêts en France

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 10 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Opitz (INRAE Avignon) Résumé :

Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. We here develop a joint model for the occurrence intensity and the wildfire size distribution by combining extreme-value theory and point processes within a novel Bayesian hierarchical model, and use it to study daily summer wildfire data for the French Mediterranean basin during 1995-2018. The occurrence component models wildfire ignitions as a spatiotemporal log-Gaussian Cox process. Burnt areas are numerical marks attached to points and are considered as extreme if they exceed a high threshold. The size component is a two-component mixture varying in space and time that jointly models moderate and extreme fires. We capture non-linear influence of covariates (Fire Weather Index, forest cover) through component-specific smooth functions, which may vary with season. We propose estimating shared random effects between model components to reveal and interpret common drivers of different aspects of wildfire activity. This leads to increased parsimony and reduced estimation uncertainty with better predictions. Fast approximate (but accurate) Bayesian estimation is carried out in the framework of the integrated nested Laplace approximation. Our methodology provides a holistic approach to explaining and predicting the drivers of wildfire activity and associated uncertainties.


Dynamical properties of rough delay equations

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 March 2022 10:45-11:45 Lieu : Lien Teams Oratrice ou orateur : Mazyar Ghani Varzaneh (Technische Universität Berlin) Résumé :

This talk aims to incorporate two subjects for developing a framework for studying the long-time behavior solution of singular delay equations. Singular delay equations fail to induce the flow property. Accordingly, for a long time, many people have believed it is not possible to apply the idea of random dynamical systems to this family of equations.
In this talk, we claim, is possible. The main trick is to regard the solution in the language of the Rough path and then construct the flow property in a bundle-like family of Banach spaces. The main challenge here is to prove the Multiplicative Ergodic Throem in this new framework. After proving this crucial theorem, we can generate the Lyapunov exponents. These exponents can be regarded as a generalization of eigenvalues. We then apply these theorems to prove the invariant manifolds in our setting. The main tools here are the rough path theory and random dynamical systems.
This talk is based on my doctoral thesis. I recently have defended my thesis in February.


Renormalisation locale pour les EDPS singulières

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 24 February 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yvain Bruned (University of Edinburgh) Résumé :

Dans cet exposé, on présentera les outils des structures de régularité pour traiter les EDP stochastiques singulières qui ne sont pas invariantes par translation. On décrira en particulier l’équation renormalisée pour une très large classe de schémas de renormalisation dépendant de l’espace-temps. Cette approche est basée sur des renormalisations locales qui agissent directement au niveau de l’équation. L’exposé sera basé sur un travail en collaboration avec Ismaël Bailleul.


La forêt IDLA

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 3 February 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Coupier (Institut Mines Télécom Nord Europe) Résumé :

Le modèle IDLA (Internal Diffusion Limited Aggregation) est un modèle de croissance aléatoire sur la grille Zd introduit dans les années 90 et permettant de modéliser l’évolution d’un bassin de culture de cellules, la croissance de zones urbaines ou encore la propagation d’un fluide visqueux. C’est une suite d’ensembles aléatoires (An)n définie comme suit : A0 = {0} et, étant donné An, on lance une marche aléatoire simple depuis l’origine de Zd. Le sommet z par lequel la marche sort de l’agrégat An est ajouté pour obtenir An+1 : An+1 = An U {z}. Un arbre aléatoire se cache derrière la suite des agrégats (An)n… Afin d’étudier la géométrie de cet arbre, nous avons défini en 2020 un graphe aléatoire auxiliaire, baptisé la forêt dirigée IDLA. Ce nouvel objet possède d’intéressantes propriétés et des conjectures excitantes qui seront abordées dans cet exposé. Travail en collaboration avec N. Chenavier (ULCO) et A. Rousselle (Dijon)


Functional data clustering with outlier detection

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 27 January 2022 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Julien Jacques (Université Lumière Lyon 2) Résumé :

With the emergence of numerical sensors in many aspects of every-day life, there is an increasing need in analyzing high frequency data, which can be seen as discrete observation of functional data.
The presentation will focus on the clustering of such functional data, in order to ease their modeling and understanding. To this end, a novel clustering technique for multivariate functional data is presented.
This method is based on a functional latent mixture model which fits the data in group-specific functional subspaces through a multivariate functional principal component analysis.
In such clustering analysis, the presence of outliers can confuse the notion of cluster.
Consequently, a contaminated version of the previous mixture model is proposed. This model both clusters the multivariate functional data into homogeneous groups and detects outliers. The main advantage of this procedure over its competitors is that it does not require us to specify the proportion of outliers.
Model inference is performed through an Expectation-Conditional Maximization algorithm, and the BIC criterion is used to select the number of clusters. Numerical experiments on simulated data demonstrate the high performance achieved by the inference algorithm. In particular, the proposed model outperforms competitors. Its application on the real data which motivated this study allows us to correctly detect abnormal behaviors.


Durées de vie extrémales en analyse topologique des données

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 20 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas Chenavier (Université du Littoral Côte d'Opale) Résumé :

L’un des principes de l’analyse topologique des données est d’étudier un ensemble de données, représentées sous forme d’un nuage de points, à partir d’outils topologiques. Un concept de base est celui de l’homologie persistante. Cette dernière mesure les naissances et les morts de diverses caractéristiques topologiques, telles que les boucles et les cavités, lorsque l’on fait grossir des boules en chaque point d’un processus de Poisson (on parle de modèle Booléen). Dans cet exposé, nous nous intéressons aux durées de vie extrémales pour de telles caractéristiques. Nous étudions d’abord le cas particulier des cavités et donnons l’ordre de grandeur du maximum (resp. du minimum) de leurs durées de vie. Une approximation poissonienne du nombre d’excédents est également établie. Nous étendons ensuite l’étude à des caractéristiques quelconques pour les complexes simpliciaux de Cech et de Vietoris-Rips. Travail joint avec C. Hirsch.


À propos de l'espérance conditionnelle contrainte dans un domaine non convexe

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 13 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Adrien Richou (Université de Bordeaux) Résumé :

Je présenterai dans cet exposé des résultats nouveaux sur l’existence et l’unicité de solution pour des EDSRs réfléchies dans des domaines non convexes supposés “faiblement étoilés”. Notons que le cas particulier des EDSRs de générateur nul, à savoir l’espérance conditionnelle pour la filtration brownienne, est déjà un cas d’étude intéressant et permet de définir une notion de moyenne contrainte à prendre ses valeurs dans un ensemble non convexe. En particulier, on établit des résultats d’existence et d’unicité dans un cadre markovien avec une condition terminale et un générateur réguliers, mais également dans un cadre général sous une hypothèse de petitesse sur les paramètres de l’EDSR. C’est un travail en commun avec Jean-François Chassagneux (Université de Paris) et Sergey Nadtochiy (Illinois Institute of Technology).


Stochastic approximation of the paths of killed Markov processes conditioned on survival

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 6 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Oliver Tough (Université de Neuchâtel) Résumé :

Reinforced processes are known to provide a stochastic approximation for the quasi-stationary distributions of killed Markov processes. We show how the construction may be adapted to provide a stochastic approximation of the paths of killed Markov processes conditioned on survival. Whilst rigorous results are restricted to time being discrete and the state space finite, the strategy employed should be extendable to a general setting in the future.


Pathwise regularization of the stochastic heat equation with multiplicative noise through irregular perturbation

Catégorie d'évènement : Séminaire Probabilités et Statistique Date/heure : 16 December 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémi Catellier (Université Côte d'Azur) Résumé :

Existence and uniqueness of solutions to the stochastic heat equation with multiplicative spatial noise is studied. In the spirit of pathwise regularization by noise, we show that a perturbation by a sufficiently irregular continuous path establish wellposedness of such equations, even when the drift and diffusion coefficients are given as generalized functions or distributions. In addition we prove regularity of the averaged field associated to a Lévy fractional stable motion, and use this as an example of a perturbation regularizing the multiplicative stochastic heat equation.

Joint work With Fabian Harang


3 4 5 6 7 8 9 10 11 12 13 14