Geometry working group

Upcoming presentations

Abonnement iCal

Past presentations

Groupe de Travail "Surfaces K3" : Espaces de modules

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 11 December 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :
J’exposerai deux points de vue principaux sur la construction d’espaces de modules de surfaces K3. D’une part, la théorie du schéma de Hilbert permet pour chaque entier d, de construire un espace de modules grossiers pour les K3 admettant une polarisation de carré 2d (dans la catégorie des espaces algébriques en général, mais on sait aussi construire cet espace comme variété quasi-projective dans le cadre complexe). D’autre part, la théorie des variations de structures de Hodge permet de construire un espace de modules fin pour les K3 marquées. Cette construction est rendue possible par le théorème de Torelli global joint au théorème de surjectivité de l’application des périodes, dont j’expliquerai les énoncés.
Je donnerai aussi quelques éléments permettant de décrire géométriquement cet espace, qui apparaît comme variété complexe non-séparée revêtant le domaine de périodes des surfaces K3. On verra notamment que l’on peut retrouver les espaces de modules de K3 polarisées comme quotients par des réseaux arithmétiques d’hypersurfaces adéquates dans cet espace de modules fin.

Groupe de Travail "Surfaces K3" : la construction de Kuga-Satake.

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 27 November 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Gianluca Pacienza Résumé :

L’objectif de cet exposé est de présenter la construction de Kuga-Satake qui associe à toute structure de Hodge de type K3 une structure de Hodge de poids 1. Dans l’exposé nous introduirons les algèbres de Clifford et rappellerons le lien entre structures de Hodge et représentations avant de présenter la construction de Kuga-Satake. Nous terminerons en illustrant cette construction dans le cas des surfaces K3 de Kummer.


Measures of irrationality for projective varieties (Lecture 3)

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 21 November 2023 16:30-18:00 Lieu : Salle Döblin Oratrice ou orateur : Francesco Bastianelli Résumé :

Measures of irrationality for projective varieties (Lecture 2)

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 21 November 2023 15:00-16:30 Lieu : Salle Döblin Oratrice ou orateur : Francesco Bastianelli Résumé :

Measures of irrationality for projective varieties (Lecture 1)

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 20 November 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Francesco Bastianelli Résumé :
An important problem in algebraic geometry is understanding whether a given variety satisfies some rationality property, such as being  rational, uniruled, rationally connected, unirational or stably rational.
The purpose of these lectures is to investigate a complementary circle of questions: in what manner can one quantify and control `how irrational’ a given complex projective variety X might be?
In this direction, we will consider various birational invariants called `measures of irrationality’, which somehow measure the failure of a given projective
variety to satisfy the rationality properties listed above. In particular, I will focus on the `degree of irrationality’ (i.e. the least degree of a dominant rational map from X to the projective space) and the `covering gonality’ (i.e. the least gonality of a curves passing through a general point of X).
Initially, I will introduce these ideas and I will discuss various examples and results. Then I will present some techniques based on positivity properties of canonical bundles, which lead to lower bounds for those birational invariants. Finally, I will show how these techniques can be used to describe the invariants for hypersurfaces of large degree and for other varieties of general type.
Main references:
– F. Bastianelli, R. Cortini and P. De Poi, The gonality theorem of Noether for hypersurfaces, J. Algebraic Geom. 23 (2014), 313-339.
– F. Bastianelli, P. De Poi, L. Ein, R. Lazarsfeld, B. Ullery, Measures of irrationality for hypersurfaces of large degree, Compos. Math. 153 (2017), 2368-2393.
– F. Bastianelli, Irrationality issues for projective surfaces, Boll. Unione Mat. Ital. 11 (2018), 13-25.
– F. Bastianelli, C. Ciliberto, F. Flamini, P. Supino, Gonality of curves on general hypersurfaces, J. Math. Pures Appl. 125 (2019), 94-118.

Groupe de travail - Surfaces K3

Catégorie d'évènement : Géométrie Date/heure : 13 November 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Hiault Résumé :
« Structure de Hodge, premières définitions et propriétés ».
Résumé : L’objectif de cet exposé est d’introduire la notion de structure de Hodge. L’idée est de systématiser l’étude des structures ayant des décompositions semblables à celle obtenues par les théorèmes de Hodge pour les groupes de cohomologies. Après un intermède de définitions et propriétés, nous essayerons de présenter une étude plus détaillée des structures de Hodge de type K3, en étudiant ses sous-structures comme le réseau transcendent. L’étude de ses sous-structures sera utile pour la suite du groupe de lecture, permettant par exemple d’obtenir des résultats sur le groupe des automorphismes d’une surface K3.

Surfaces K3 : définitions et premières propriétés

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 23 October 2023 10:15-12:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Gianluca Pacienza Résumé :

Dans ce groupe de travail nous suivrons le livre « Lectures on K3 surfaces » de D. Huybrechts. Cette première séance sera consacrée à introduire les surfaces K3 dans le cadre algébrique et dans le cadre analytique complexe, aux premiers exemples et aux propriétés de base de ces surfaces.


Groupe de travail surfaces minimales des 3 variétés hyperboliques

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 27 February 2023 14:00-15:30 Lieu : Oratrice ou orateur : Jean-François Grosjean Résumé :

Jean-François nous expliquera les inégalités “les moins difficiles” de Calegari-Marques-Neves qui relient le comptage des surfaces minimales et les invariants asymptotiques de la variété.


Groupe de travail Surfaces minimales des 3-variétés hyperboliques

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 16 January 2023 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Ginoux Résumé :

Titre : Surfaces minimales dans les variétés hyperboliques quasi-fuchsiennes

Résumé : Nous présenterons un résultat d’unicité, dû à Karen Uhlenbeck, de surfaces minimales plongées dans les variétés hyperboliques de dimension 3 quasi-fuchsiennes.


GdT Surfaces minimales des 3 variétés hyperboliques

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 12 December 2022 02:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Nicolas Ginoux Résumé :

Surfaces minimales dans les variétés hyperboliques quasi-fuchsiennes :

Nous présenterons un résultat d’unicité, dû à Karen Uhlenbeck, de surfaces minimales plongées dans les variétés hyperboliques de dimension 3 quasi-fuchsiennes.

 


1 2 3 4 5 6 7 8 9