Séminaires

Exposés à venir

The shifted symplectic geometry of classifying spaces

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 29 janvier 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Miquel Cueca Ten (KU Leuven) Résumé :

Let G be a Lie group whose Lie algebra carries an Ad-invariant, nondegenerate symmetric pairing. Then its classifying space has a 2-shifted symplectic structure. In the first part of the talk, I will present concrete models for this structure coming from differential geometry and mathematical physics. In the second part, I will study the analogue of Lagrangian submanifolds and show their relation to Poisson and Dirac structures. This talk is based on joint work with Chenchang Zhu, and with Daniel Álvarez and Henrique Bursztyn.


Une approche probabiliste aux nombres de Skewes généralisés

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 29 janvier 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Mounir Hayani (Université de Bordeaux) Résumé :

Dans cet exposé, on étudie les courses de nombres premiers entre résidus et non-résidus quadratiques modulo q. Les nombres de Skewes généralisés désignent les premières valeurs pour lesquelles les résidus quadratiques devancent les non-résidus. Je présenterai un travail en collaboration avec A. Bailleul et T. Untrau dans lequel nous réfutons une conjecture de Fiorilli portant sur la taille de ces nombres. De plus, sous l’hypothèse de Riemann généralisée, ainsi qu’une hypothèse d’indépendance linéaire effective, nous établissons des bornes supérieures pour ces nombres en fonction de q.


Jan Pulmann — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 février 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Jan Pulmann (Charles University) Résumé :

Getting proportions of critical zeros using pair correlation of zeros of the Riemann zeta-function

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Ade Irma Suriajaya (Kyushu, Japon) Résumé :

Montgomery (1973) suggested an approach to study the pair correlation of nontrivial zeros of the Riemann zeta-function, and proved the corresponding asymptotic formula within a limited range assuming the Riemann Hypothesis (RH). The extended behavior remains a conjecture which implies the famous Pair Correlation Conjecture (PCC) for these zeros. In my previous work with Siegfred Alan C. Baluyot, Daniel Alan Goldston, and Caroline L. Turnage-Butterbaugh, we have showed how to remove RH in Montgomery’s pair correlation method and recover known results on the proportion of simple zeros under hypotheses weaker than RH. We have in addition obtained the proportion of zeros lying on the critical line, which we simply call critical zeros for brevity. Getting results on critical zeros is only achieved since we do not assume RH. We also recently noticed that these proportions can be further improved if we take further advantage of the feature that we « may » have zeros off the critical line.
In follow-up work with Daniel Goldston, Junghun Lee and Jordan Schettler, we showed that PCC without RH implies that asymptotically 100% of the zeros are simple and critical, thus RH is asymptotically true. We remark that our method also works with other pair correlation conjectures. In this talk, I would like to briefly introduce these results and our key ideas.


Job Kuit — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Job Kuit (Paderborn) Résumé :

Autour du théorème 5K de Banaszczyk

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 février 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Maud Szusterman (Ecole Polytechnique) Résumé :
La discrépance $\beta(U,V)$ entre deux compacts convexes $U$ et $V$ de l’espace euclidien, mesure combien on doit dilater $V$, dans le pire des cas, pour faire tenir une somme signée d’éléments arbitraires de $U$. Un célèbre résultat de Spencer énonce que $\beta(Q_d, Q_d) \leq 6 d^{1/2}$, où $Q_d=[-1,1]^d$.  Le problème de Komlos est d’estimer (asymptotiquement) $\beta(B_2^d, Q_d)$ : la méthode de Spencer donne ici une majoration en $O(\log d)$.
Le théorème 5K de Banaszczyk implique une majoration en $(\log d)^{1/2}$, qui a été récemment améliorée par Bansal-Jiang. Nous donnerons une preuve analytique du théorème 5K, qui suit pour l’essentiel la preuve originelle, puis nous énoncerons la reformulation de Dadush et al. qui a permis une preuve algorithmique (et probabiliste) de cet énoncé.

Paul Boisseau — titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 février 2026 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Paul Boisseau (Max Planck, Bonn) Résumé :

Heiko Gimperlein – titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Heiko Gimperlein (Innsbruck) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Kilian Lebreton (IECL) Résumé :

Effie Papageorgiou (titre à venir)

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 mars 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Effie Papageorgiou Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Emma Weschler (Lille) Résumé :

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 26 mars 2026 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Michel Balazard (Institut de Mathématiques de Marseille) Résumé :

Zhipeng Song – titre à venir

Catégorie d’évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 2 avril 2026 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Zhipeng Song (Besançon/Gand) Résumé :

Le niveau de répartition de la fonction somme des chiffres dans les progressions arithmétiques.

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 2 avril 2026 14:30-15:30 Lieu : Oratrice ou orateur : Nathan Toumi (IECL) Résumé :
Pour $q \geq 2$ et $n \in \mathbb{N}$, on note $s_q(n)$ la somme des chiffres de $n$ écrit en base $q$. Spiegelhofer (2020) a démontré que la suite de Thue–Morse admet un niveau de distribution égal à $1$, améliorant un résultat antérieur de Fouvry et Mauduit (1996). Nous généralisons ce résultat aux suites de la forme $\left\{\exp\left(2\pi i \ell s_q(n)/b\right)\right\}_{n \in \mathbb{N}}$ et fournissons un exposant explicite dans la borne supérieure. L’exposé se terminera par quelques applications à l’étude des valeurs polynomiales $(F(n))_{n \in \mathbb{N}}$ presque premières d’un polynôme $F \in \mathbb{Z}[X]$ donné, avec la condition $s_q(n) \equiv a \bmod{b}$, pour $b,q \geq 2$ deux entiers tels que $(b,q-1)=1.$

A venir

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 9 avril 2026 14:30-15:30 Lieu : Oratrice ou orateur : Jacques Benatar (Brussels) Résumé :

Archives

Choix des thèmes pour cette année

Catégorie d’évènement : Groupe de travail Géométrie non commutative Date/heure : 19 septembre 2013 14:00-15:00 Lieu : Oratrice ou orateur : Réunion d’organisation Résumé :

Comparaison des solutions d' EDP par la symétrisation de Schwarz

Catégorie d’évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 décembre 2004 09:15-10:15 Lieu : Oratrice ou orateur : Saïd Benachour Résumé :

Résumé


53 54 55 56 57 58