Exposés à venir
Archives
Interaction vague-structure pour des modèles d'ondes longues en présence d'un objet en translation au fond
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 janvier 2018 10:45-11:45 Lieu : Oratrice ou orateur : Krisztian Benyo Résumé :Dans cet exposé, nous présentons de nouveaux résultats concernant un problème d’interaction fluide-structure. Nous considérons le problème de Cauchy pour l’équation des vagues dans le cas o๠le domaine occupé par le fluide est à surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet de la force de pression du fluide. Nous examinons deux systèmes asymptotiques décrivant le cas d’un fluide parfait incompressible en faible profondeur correspondant aux équations de Saint-Venant et de Boussinesq. Nous décrivons le système couplé dans ces deux régimes asymptotiques afin d’établir des résultats d’existence et d’unicité pour des données régulières (au sens de Sobolev). Afin de déterminer le mouvement du solide, une analyse précise des termes asymptotiquement singuliers induits par les forces de frottements est nécessaire.
How to solve problems with sign-changing coefficients
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 janvier 2018 10:45-11:45 Lieu : Oratrice ou orateur : Patrick Ciarlet Résumé :This talk summarizes joint works by the speaker and Anne-Sophie BonnetBen Dhia, Lucas Chesnel, Camille Carvalho and Juan-Pablo Borthagaray on how to solve problems with discontinuous, sign-changing coefficients. In electromagnetic theory, the effective response of specifically designed materials is modeled by strictly negative coefficients: these are the so-called negative materials. Transmission problems with discontinuous, sign-changing coefficients then occur in the presence of negative materials surrounded by classical materials. For general geometries, establishing Fredholmness of these transmission problems is well-understood thanks to the T-coercivity approach [2]. Let $sigma$ be a parameter that is strictly positive in some part of the computational domain, and strictly negative elsewhere. We focus on the scalar source problem: find $u$ such that $mathrm{div}sigma nabla u – omega^2 u = f $ plus boundary condition, where $f$ is some data and $omega$ is the pulsation. Denoting by $sigma^+$ the strictly positive value, and by $sigma^-$ the strictly negative value, one can prove that there exists a critical interval $I_sigma$, such that the scalar source problem is well-posed in the Fredholm sense if, and only, if, the ratio $sigma^-/sigma^+$ lies outside the critical interval [2]. One may derive similar results for the related eigenvalue problem [4]. The shape of the interface separating the two materials must be taken into account to solve the problems numerically. For a plane interface, there exist meshing rules that guarantee an optimal convergence rate for the finite element approximation. We propose a new treatment at the corners of the interface which allows to design meshing rules for an arbitrary polygonal interface and then recover standard error estimates. This treatment relies on the use of simple geometrical transforms to define the meshes. Numerical results illustrate the importance of this new design [5, 1]. In a last part (time permitting), we discuss the extension of those results to nonlocal problems with discontinuous, sign-changing coefficients [3]. References : [1] A.-S. Bonnet-Ben Dhia, C. Carvalho, P. Ciarlet Jr., Mesh requirements for the finite element approximation of problems with sign-changing coefficients, Numer. Math. (To appear). [2] A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials, Math. Mod. Num. Anal., 46 (2012), pp. 1363–1387. [3] J.P. Borthagaray, P. Ciarlet Jr., Nonlocal models for interface problems between dielectrics and metamaterials, Proceedings of the Metamaterials’2017 Conference, Marseille, France, IEEE (To appear). [4] C. Carvalho, L. Chesnel, P. Ciarlet Jr., Eigenvalue problems with signchanging coefficients, C. R. Acad. Sci. Paris, Ser. I, 355 (2017), pp. 671– 675. [5] L. Chesnel, P. Ciarlet Jr., T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., 124 (2013), pp. 1–29.
Système fluide-structure avec conditions de bord sur la pression
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 janvier 2018 10:45-11:45 Lieu : Oratrice ou orateur : Jean-Jérôme Casanova Résumé :Dans cet exposé je souhaite présenter un résultat d’existence de solutions fortes, locales en temps, pour un système fluide-structure avec conditions de bord mixtes. Le fluide est décrit par les équations de Navier-Stokes incompressibles en dimension 2 dans un domaine de type rectangulaire. La partie supérieure du domaine est une membrane dont le déplacement satisfait une équation d’Euler-Bernoulli amortie. Le résultat est donné sans aucunes hypothèses de petitesse sur les données initiales. Je conclurai en évoquant l’existence de solutions périodiques en temps pour ce système.
Entire solutions of the Allen-Cahn-Nagumo equation
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 décembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Hirokazu Ninomiya Résumé :When several stable states coexist, propagation phenomena are often observed in many fields including dissipative situations. To characterize the universal profiles of these phenomena, traveling wave solutions and entire solutions play important roles. Here traveling wave solution is meant by a solution of a partial differential equation that propagates with a constant speed, while it maintains its shape in space, and an entire solution is a solution defined for all space and time variables. In this talk we focus on the Allen-Cahn-Nagumo equation, which is a single reaction diffusion equation with bistable nonlinearity and explain how to construct entire solutions and the relation between traveling wave solutions and entire solutions.
Approximation de fonctions avec peu de saut et existence de minimiseurs forts de Griffith en dimension n
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 décembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Flaviana Iurlano Résumé :On preuve que les fonctions spéciales à déformation bornée avec peu de saut sont proches dans le sens de l’énergie à des fonctions qui sont régulières dans un domaine plus petit. Cela permet de généraliser l’inégalité de monotonie de De Giorgi, Carriero et Leaci au contexte linéarisé en dimension n et d’établir la fermeture de l’ensemble de saut pour les minimiseurs de l’énergie de Griffith.
Hyperbolic solutions to Bernoulli's free boundary problem
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 décembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Michiaki Onodera Résumé :Bernoulli’s free boundary problem is an overdetermined problem in which one seeks an annular domain such that the capacitary potential satisfies an extra boundary condition. There exist two different types of solutions: elliptic and hyperbolic solutions. Elliptic solutions are « stable » solutions and tractable by variational method and maximum principle, while hyperbolic solutions are « unstable » solutions of which the qualitative behavior is less known. I will present a recent joint work with Antoine Henrot in which we show the qualitative behavior of hyperbolic solutions by a new flow approach.
Sur la géométrie des oeufs de branchiopodes
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 novembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alexandre Delyon Résumé :On veut expliquer la forme des oeufs d’eulimnadia, petit animal vivant dans des mares éphémères, en utilisant les outils de l’optimisation de forme. En effet, la théorie de l’évolution laisse penser que la forme des objets que l’on retrouve dans la nature résulte d’un processus d’optimisation, c’est à dire que leur forme est telle que l’objet en question est le plus à même de résister aux contraintes qui s’exercent sur lui. On propose un critère naturel optimisé par la forme de l’oeuf, que l’on modélise mathématiquement par un problème de minimisation de fonctionnelle de forme s’écrivant comme combinaison convexe du rayon intérieur, du diamètre et de la densité, notion que l’on définira. On présente le travail réalisé jusqu’à présent.
Global exact controllability of the bilinear Schroedinger potential type models on compact quantum graphs
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 novembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alessandro Duca Résumé :Let us consider the bilinear Schr »{o}dinger equation $ipartial_t psi(t)=Apsi(t)+u(t)Bpsi(t)$ in $L^2(G,mathbb C)$ for $G$ a compact quantum graph. We assume $B$ a bounded symmetric operator, $u$ a control function and $psi^0$ is the initial state of the system. The operator $A=-Delta$ is the Laplacian equipped with self-adjoint type boundary conditions into the vertices of the graph. Provided the well-posedness of the equations, we present assumptions on $B$ and on the spectrum of $A$ implying the global exact controllability in suitable subspaces of $mathcal H$. When the previous assumptions fail, we introduce a weaker notion of controllability allows to provide interesting results also when the graph $G$ is a complex structure and we are not able to verify the spectral assumptions for the global exact controllability. »
Quantum Mean Field Asymptotics and Multiscale Analysis
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 novembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Sébastien Breteaux Résumé :Joint work with Z. Ammari, and F. Nier. In this work, we study how multiscale analysis and quantum mean field asymptotics can be brought together. In particular we study when a sequence of one-particle density matrices has a limit with two components: one classical and one quantum. The introduction of « separating quantization for a family » provides a simple criterion to check when those two types of limit are well separated. We give examples of explicit computations of such limits, and how to check that the separating assumption is satisfied.
A propos de la contrôlabilité de $y_t - epsilon y_{xx} + M y_x =0$ lorsque $epsilon$ tend vers 0
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 novembre 2017 10:45-11:45 Lieu : Oratrice ou orateur : Arnaud Munch Résumé :Nous discutons dans cet exposé de la limite du cout du controle a zero de l’equation d’advection-diffusion $y_t-epsilon y_{xx}+ M y_x=0$ lorsque le paramètre $epsilon$ tend vers $0$. Cette limite dépend fortement du temps de contrôlabilité et du signe de M. A travers quelques remarques de nature théoriques et numériques, nous montrons à quel point ce problème de contrôlabilité est singulier. Nous discutons notamment l’analyse asymptotique de l’équation.