Upcoming presentations
Séréna Pedon
Catégorie d'évènement : Séminaire des doctorants Date/heure : 30 April 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Séréna Pedon Résumé :TBA
Brieuc Frénais
Catégorie d'évènement : Séminaire des doctorants Date/heure : 7 May 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Brieuc Frénais Résumé :TBA
Louise Martineau
Catégorie d'évènement : Séminaire des doctorants Date/heure : 14 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louise Martineau (Université de Strasbourg) Résumé :TBA
Killian Lutz
Catégorie d'évènement : Séminaire des doctorants Date/heure : 17 September 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Killian Lutz (Université de Strasbourg) Résumé :TBA
Christopher Nicol
Catégorie d'évènement : Séminaire des doctorants Date/heure : 24 September 2025 10:45-12:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christopher Nicol (Université de Strasbourg) Résumé :TBA
Past presentations
Introduction à des modèles de percolation avec et sans contraintes
Catégorie d'évènement : Séminaire des doctorants Date/heure : 26 October 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierrick Siest Résumé :Dans cet exposé je parlerai de percolation, qui est un domaine relativement récent des probabilités discrètes (1957). Étant donné un graphe $G=(V,E)$, une configuration de percolation $\omega$ sur $G$ est un élément de $\{0,1\}^E$, où la valeur $1$ pour une arête $e\in E$ code le fait qu’on considère que cette arête est “ouverte”, et la valeur $0$ qu’elle est “fermée”. On peut voir cette configuration comme un sous-graphe de $G$, en conservant les sommets de $G$ et où l’ensemble des arêtes est $\{e\in E~:~ \omega(e)=1\}$. Le choix d’une mesure de probabilité sur l’ensemble des configurations de percolation de $G$ définit un modèle de percolation sur $G$.
La percolation de Bernoulli, modèle qu’on appellera “sans contraintes”, sera le premier modèle étudié. Je parlerai de grands résultats qui ont été obtenus, mais également de certaines conjectures qui demeurent sur des graphes relativement simples.
Enfin j’aborderai le cas des modèles dits “avec contraintes”, qui constituent le sujet de ma thèse. Mon but sera de faire ressortir les difficultés que peuvent apporter ces contraintes, et de montrer des exemples de façons de les contourner.
Introduction à la théorie du contrôle et contrôle du problème de Stefan
Catégorie d'évènement : Séminaire des doctorants Date/heure : 5 October 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Blaise Colle Résumé :Quelques problèmes de géométrie discrète
Catégorie d'évènement : Séminaire des doctorants Date/heure : 1 June 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bastien Laboureix (LORIA,Nancy) Résumé :Barycentres de séries temporelles : une nouvelle approche basée sur la méthode de la signature
Catégorie d'évènement : Séminaire des doctorants Date/heure : 27 April 2022 10:45-10:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphael Mignot Résumé :La méthode de la signature a été largement utilisée pour l’analyse des séries temporelles multivariées. Cette approche a prouvé son efficacité pour de nombreuses applications en apprentissage statistique. La définition d’une notion de barycentre dans l’espace des signatures est un premier pas prometteur permettant de développer de nouvelles extensions de l’analyse en composantes principales (ACP) ou de l’algorithme des k-moyennes aux séries temporelles.
Espace projectif complexe, sous-variétés analytiques et théorème de Chow
Catégorie d'évènement : Séminaire des doctorants Date/heure : 6 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yann Millot Résumé :Le but de cet exposé est de présenter les différents concepts de base de la géométrie, en particulier de la géométrie complexe. L’objet de base de toute géométrie est la variété (différentielle, algébrique, complexe) qui généralise la notion d’ouvert d’un espace vectoriel. Par exemple, la surface terrestre ressemble localement au plan réel, mais pas dans sa globalité, et la théorie des variétés différentielles va permettre de comprendre cet objet. La géométrie complexe est plus restrictive par ses fonctions sont beaucoup moins nombreuses, mais un exemple qui apparait naturellement l’espace projectif, car il est possible de mettre une structure géométrique sur un ensemble de droites vectorielles. Enfin, les géométries algébrique et analytique complexes entretiennent des liens proches, tout polynôme étant une fonction holomorphe, toute variété algébrique peut-être vue comme une variété complexe. Cependant, les fonctions holomorphes se comportent presque comme des polynômes, il est donc naturel de s’interroger sur une éventuelle réciproque : Dans le cas projectif, la réponse a été donnée par W.L. Chow en 1949.
Representation Theory of Lie groups and applications in Physics and Neural Networks
Catégorie d'évènement : Séminaire des doctorants Date/heure : 23 March 2022 10:45-11:45 Lieu : Oratrice ou orateur : Rafailia Tsiavou Résumé :Résumé à venir
L’homologie persistante appliquée à l’analyse musicale
Catégorie d'évènement : Séminaire des doctorants Date/heure : 9 March 2022 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Victoria Callet Résumé :L’homologie persistante est un outil de la théorie simpliciale construit à la fin du XXième siècle et qui s’utilise principalement en Analyse Topologique des Données (TDA) et reconnaissance de forme. L’idée principale est d’extraire un nuage de points d’un objet que l’on souhaite étudier et de transformer ce nuage en un complexe simplicial filtré, en utilisant par exemple la méthode de Vietoris-Rips. Le but de l’homologie persistante est de calculer l’homologie simpliciale du complexe à chaque temps de filtration et d’observer les caractéristiques topologiques qui persistent au cours de la filtration. Cette approche permet d’encoder l’évolution topologique d’un objet à travers une seule structure algébrique. L’homologie persistante a des applications dans de nombreux domaines (en biologie, médecine, astrophysique,…) et dans cet exposé, après avoir défini l’homologie persistante en reprenant les bases de la théorie simpliciale, nous montrerons comment celle-ci peut s’appliquer dans le contexte de l’analyse musicale.
Un voyage quantique autour de l'équation des plus bas niveaux de Landau
Catégorie d'évènement : Séminaire des doctorants Date/heure : 26 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Valentin Schwinte Résumé :Titre à venir
Catégorie d'évènement : Séminaire des doctorants Date/heure : 15 December 2021 14:00-15:00 Lieu : Oratrice ou orateur : Bastien Laboureix (LORIA,Nancy) Résumé :Variétés de Shimura sur les corps finis
Catégorie d'évènement : Séminaire des doctorants Date/heure : 24 November 2021 10:45-11:45 Lieu : Oratrice ou orateur : Thibault Alexandre (Sorbonne Université, Paris) Résumé :Les variétés de Siegel sont des variétés de Shimura qui paramètrent des variétés abéliennes avec une polarisation. Le premier exemple est la courbe modulaire dont l’importance est cruciale en théorie des nombres : elle intervient dans la preuve du théorème de Fermat-Wiles et plus généralement dans la correspondance de Langlands pour $GL_2$ sur $\mathbb{Q}$. Dans cet exposé, j’introduirai les variétés de Siegel en tant que variétés algébriques sur un corps fini et je décrirai les propriétés géométriques de certains fibrés vectoriels automorphes vivant dessus.