PDE and applications working group | Nancy

Upcoming presentations

Anisa Chorwadwala (IISER, India)

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 June 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anisa Chorwadwala (IISER, India) Résumé :

Abonnement iCal

Past presentations

Contrôle en temps petit des systèmes bilinéaires conservatifs en dimension finie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 09:15-10:15 Lieu : Oratrice ou orateur : Thomas Chambrion Résumé :

On s’intéresse au temps nécessaire pour transférer un système quantique fermé de dimension finie d’un état initial vers une cible donnée. On fera le lien avec le contrôle en norme L^1 minimale pour de tels systèmes et on en déduira des stratégies efficaces pour les cas où les approximations riemanniennes usuelles sont inefficaces.

Dans le cadre des journées thématiques “Quantum Lo  : mécanique quantique en Lorraine”


Preuve du "crack initiation" + comportement asymptotique au voisinage d'une fissure

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie / Antoine Lemenant Résumé :

Ce deuxième exposé du groupe de travail se fera en 2 parties. Dans une première partie Camille L. exposera (les idées principales) de la preuve du théorème de A. Chambolle, A. Giacomini et M. Ponsiglione à propos de “l’initiation soudaine d’une fissure”, et dans une deuxième partie, Antoine L. fera un court résumé d’un travail ancien en collaboration avec Antonin Chambolle et J-F Babadjian sur l’analyse asymptotique d’une solution d’EDP elliptique au voisinage d’une fissure non lisse (seulement rectifiable et connexe). Cette deuxième partie est en lien avec la notion “d’Energy release rate” évoqué par Camille L. dans son premier exposé, mais pourra être suivie de façon totalement indépendante du reste.


Evolution en temps des fissures

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :
Le but de cet exposé est de présenter la formulation mathématique de la propagation des fissures. Je commencerai pas présenter le modèle développé par Griffith dans les années 20 et ses défaults (il ne permet pas d’initier une fracture ou de prédire la direction qu’elle va prendre). Je présenterai ensuite le modèle introduit par Francfort et Marigo dans les années 90. On verra que ce modèle permet l’initialisation des fractures, et parfois même une initialisation brutale d’après un résultat de Chambolle, Giacomini et Ponsiglione.

Applications harmoniques minimisantes avec ancrage tangentiel

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :

Motivés par des expériences avec des gouttes de cristaux liquides nématiques, nous étudions les applications harmoniques qui apparaissent comme des minimiseurs de l’approximation à une constante de l’énergie d’Oseen-Frank avec une condition au bord tangentielle. Dans la première partie de l’exposé, nous étudions la régularité des minimiseurs proches de la frontière par une méthode d’extension-réflexion. Dans la deuxième partie, je présenterai quelques résultats concernant la symétrie des minimiseurs et la localisation des défauts qui peuvent survenir. L’exposé est basé sur un travail commun avec Lia Bronsard et Andrew Colinet.


Applications harmoniques minimisantes avec ancrage tangentiel

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :
Motivés par des expériences avec des gouttes de cristaux liquides nématiques, nous étudions les applications harmoniques qui apparaissent comme des minimiseurs de l’approximation à une constante de l’énergie d’Oseen-Frank avec une condition au bord tangentielle. Dans la première partie de l’exposé, nous étudions la régularité des minimiseurs proches de la frontière par une méthode d’extension-réflexion. Dans la deuxième partie, je présenterai quelques résultats concernant la symétrie des minimiseurs et la localisation des défauts qui peuvent survenir. L’exposé est basé sur un travail commun avec Lia Bronsard et Andrew Colinet.

Alexandre Munnier

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 November 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexandre Munnier Résumé :

TBA


Alexandre Munnier

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 November 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexandre Munnier Résumé :

TBA


Transport of Gaussian measures under the flow of Hamiltonian PDEs: quasi-invariance and singularity

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 September 2024 09:15-10:15 Lieu : Salle Döblin Oratrice ou orateur : Leonardo Tolomeo (University of Edinburgh) Résumé :

In this talk, we consider the Cauchy problem for the fractional NLS with cubic nonlinearity (FNLS), posed on the one-dimensional torus T, subject to initial data distributed according to a family of Gaussian measures.

We first discuss how the flow of Hamiltonian equations transports these Gaussian measures. When the transported measure is absolutely continuous with respect to the initial measure, we say that the initial measure is quasi-invariant.

In the high-dispersion regime, we exploit quasi-invariance to build a (unique) global flow for initial data with negative regularity, in a regime that cannot be replicated by the deterministic (pathwise) theory.

In the 0-dispersion regime, we discuss the limits of this approach, and exhibit a sharp transition from quasi-invariance to singularity, depending on the regularity of the initial measure.

This is based on joint works with J. Forlano (UCLA/University of Edinburgh) and with J. Coe (University of Edinburgh).


Valentin Schwinte - Autour de l'équation du plus bas niveau de Landau

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 19 March 2024 09:15-10:15 Lieu : Oratrice ou orateur : Valentin Schwinte Résumé :

Ce groupe de travail portera sur l’étude de l’équation du plus bas niveau de Landau (LLL). Cette équation Hamiltonienne décrit un état de la matière appelé condensat de Bose-Einstein, et possède notamment des applications en superconductivité et superfluidité. Nous nous intéresserons à la dynamique de cette équation, et démontrerons quelques propriétés de base : noyau intégral, symétries de l’équation, quantités conservées, existence et unicité. Ce sera l’occasion d’introduire l’espace de Bargmann-Fock sur lequel l’équation (LLL) est définie. Nous finirons en présentant des résultats portant sur une classe de solutions appelées onde-stationnaires, liées à la minimisation d’une fonctionnelle intégrale.


Valentin Schwinte - Autour de l'équation du plus bas niveau de Landau

Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 12 March 2024 09:15-10:15 Lieu : Oratrice ou orateur : Valentin Schwinte Résumé :

Ce groupe de travail portera sur l’étude de l’équation du plus bas niveau de Landau (LLL). Cette équation Hamiltonienne décrit un état de la matière appelé condensat de Bose-Einstein, et possède notamment des applications en superconductivité et superfluidité. Nous nous intéresserons à la dynamique de cette équation, et démontrerons quelques propriétés de base : noyau intégral, symétries de l’équation, quantités conservées, existence et unicité. Ce sera l’occasion d’introduire l’espace de Bargmann-Fock sur lequel l’équation (LLL) est définie. Nous finirons en présentant des résultats portant sur une classe de solutions appelées onde-stationnaires, liées à la minimisation d’une fonctionnelle intégrale.


1 2 3 4 5 6 7 8 9