L'IECL

Séminaire de Théorie des Nombres de Nancy-Metz

Séminaire de Théorie des Nombres de Nancy-Metz

Abonnement iCal : iCal

Le séminaire Théorie des Nombres de Nancy-Metz a lieu les jeudis à
14h30 à l’IECL, en général dans la salle Döblin au 4 ème étage, site de
Nancy.

Organisateurs: Jérémy Dousselin, Youness Lamzouri, et Anne De Roton

Exposés à venir

Exposés passés

Biais de Lemke Oliver et Soundararajan pour les sommes de deux carrés

10 mars 2022 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Lucile Devin (Université du Littoral Côte d'Opale)
Résumé :

Récemment, Lemke Oliver et Soundararajan ont observé d’importants biais dans la répartition de couples de nombres premiers consécutifs dans les progressions arithmétiques. Ils ont proposé un modèle heuristique basé sur la conjecture de Hardy–Littlewood qui explique très bien ces observations.
Nous discuterons la question analogue pour les nombres qui s’écrivent comme une somme de deux carrés d’entiers. Un biais semblable apparaît dans les données et nous développons un modèle heuristique similaire pour l’expliquer.
Travail joint avec Chantal David, Jungbae Nam et Jeremy Schlitt.


Gowers uniformity of thin subsets of primes

3 mars 2022 14:30-15:30 - Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur : Fernando Xuancheng Shao (University of Kentucky)
Résumé :

A celebrated theorem of Green-Tao asserts that the set of primes contains arbitrarily long arithmetic progressions. In fact, they count asymptotically the number of k-term arithmetic progressions in primes up to a threshold. Their work involves discorrelation estimates between primes and nilsequences, which imply that the set of primes is Gowers uniform. In this talk I will discuss results of this type for primes restricted to short intervals and in arithmetic progressions. For example, we prove that the set of primes in (X, X+H]  with H > X^{5/8+\varepsilon} is Gowers uniform; we also prove that, for almost all q < X^{1/4-\varepsilon}, the set of primes up to X in a coprime residue class a\pmod{q} is Gowers uniform. This is based on joint works with K. Matomäki, J. Teräväinen, T. Tao.


Zéros réels des polynômes de Fekete et applications

24 février 2022 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Youness Lamzouri (IECL)
Résumé :

Les polynômes de Fekete sont certains polynômes de type Littlewood dont les coefficients sont les valeurs du symbole de Legendre, ou plus généralement du symbole de Kronecker. Ces polynômes ont été considérés par Fekete afin d’étudier les zéros réels des fonctions L de Dirichlet, et d’essayer de démontrer la non-existence des fameux zéros de Siegel. Depuis lors, leurs zéros et la répartition de leurs valeurs ont été intensivement étudiés. Dans cet exposé, je présenterai des résultats récents concernant les zéros réels des polynômes de Fekete. Je discuterai également de certaines applications de ces résultats, notamment aux changements de signes des sommes partielles de sommes de caractères quadratiques. Ceci est un travail en commun avec O. Klurman et M. Munsch.


Ensembles de formes linéaires de complexité maximale

3 février 2022 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Michel Waldschmidt (Sorbonne Université)
Résumé :

Dans un travail en commun avec Michael Kaminski et Igor Shparlinski (arXiv:2110.04657), nous donnons des exemples explicites d’ensembles de $m$ formes linéaires en $n$ variables sur le corps des nombres rationnels, dont le calcul nécessite $m(n-1)$ additions.


Questions d'équirépartition de sommes exponentielles indexées par un sous-groupe

27 janvier 2022 14:00-15:00 - Salle Döblin
Oratrice ou orateur : Théo Untrau (IMB, Bordeaux)
Résumé :

On s’intéresse à des sommes exponentielles habituellement indexées par un système de représentants
des entiers inversibles modulo p, ou des inversibles modulo une puissance d’un nombre premier p.
Cependant, au lieu de regarder ces sommes complètes, on les restreint en les indexant seulement
par un sous-groupe d’ordre d fixé. Lorsque p tend vers l’infini en respectant certaines conditions de
congruence qui assurent l’existence d’un unique sous-groupe d’ordre d, on démontre que nos
familles de sommes exponentielles s’équirépartissent dans certaines régions du plan complexe
décrites comme l’image d’un tore par un polynôme de Laurent relativement explicite. Dans un second temps, on montre que l’on peut également restreindre le paramètre indexant la famille de sommes à ne parcourir que de très petits sous-groupes des classes inversibles modulo p, sans affecter le résultat d’équirépartition.


Manin's conjecture for singular cubic hypersurfaces

20 janvier 2022 14:00-15:00 - Salle Döblin
Oratrice ou orateur : Wen Tingting (Paris 13)
Résumé :
Let $S_Q$ denote the cubic hypersurface $x^3= Q(y_1, \ldots , y_m)z$,
where $Q$ is a positive definite quadratic form in $m$ variables with integer coefficients.
This $S_Q$ ranges over a class of singular cubic hypersurfaces as $Q$ varies.
For $S_Q$, we prove that Manin’s conjecture is true if $Q$ is locally determined, and we give an explicit asymptotic formula with a power saving error term; we also show in general that Manin’s conjecture is true up to a leading constant if $m \geq 6$ is even.

Réseaux sur les entiers de Gauss et fractions continues complexes

16 décembre 2021 14:00-15:00 - Salle Döblin
Oratrice ou orateur : Nicolas Chevallier (Université de Haute Alsace)
Résumé :

L’objectif est de construire un algorithme de fraction continue complexe trouvant toutes les meilleures approximations diophantiennes d’un nombre complexe. En utilisant la suite des vecteurs minimaux d’un réseau de $\mathbb{C}^2$ sur l’anneau des entiers de Gauss, nous obtenons un algorithme défini sur une sous-variété de $\mathrm{SL}(2,\mathbb{C})$. La correspondance entre les vecteurs minimaux et les meilleures approximations diophantiennes garantit que notre algorithme atteint son but. Un sous-produit de l’algorithme est la meilleure constante pour la version complexe du théorème de Dirichlet sur les approximations des nombres complexes par les quotients de deux entiers gaussiens.


Journée Scientifique FCH "Pseudorandomness, cryptography and number theory"

9 décembre 2021 00:00-23:59 - Centre Inria Nancy-Grand Est
Oratrice ou orateur :
Résumé :

Une suite est dite pseudo-aléatoire est une suite qui « ressemble » à une suite aléatoire. Ces suites ont de nombreuses applications en cryptographie, en particulier, dans le chiffrement par flot et des dispositifs de registre à décalage à rétroaction linéaire. Pour évaluer ce caractère, il faut faire appel à plusieurs notions mathématiques telles que la corrélation, la complexité linéaire et bien d’autres mesures de complexité et répartition. Alors pour tenter de créer des suites pseudo-aléatoires, on peut prendre des exemples issus de la théorie des nombres comme la suite des valeurs du symbole de Legendre pour un grand nombre premier.

L’objectif de cette journée est d’expliciter différentes relations qui existent entre la cryptographie et la théorie des nombres et de mettre en évidence leur lien avec des suites pseudo-aléatoires.

Cette journée scientifique est organisée dans le cadre institutionnel de la Fédération Charles Hermite et avec le soutien de LUE-Digitrust et l’ANR ArithRand.

Programme de la journée

Organisateurs locaux:

Cécile Dartyge (IECL), Damien Jamet (LORIA), Pierre Popoli (IECL) et Thomas Stoll (IECL)


Changes in digits of primes

2 décembre 2021 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Benli Kübra (IECL)
Résumé :

Erdős proved that there are infinitely many weakly prime numbers (also called (digitally) delicate primes), i.e. prime numbers such that changing any single one of the digits, in a given base, with any other digit always results in a composite number. Tao proved that weakly prime numbers constitute a positive proportion in all prime numbers. In this talk, we are going to discuss further quantitative refinements on the distribution of weakly prime numbers.


Relations entre les zéros d'un polynôme et sa mesure de Mahler

25 novembre 2021 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Jean-Marc Sac-Épée (IECL)
Résumé :

Dans cet exposé, on va s’intéresser aux informations qu’on peut donner sur les zéros d’un polynôme $P$ à coefficients complexes connaissant sa mesure de Mahler $M(P)$. Ces informations concerneront notamment la localisation des zéros, leur distance à certains points du cercle unité, le nombre de zéros réels.

On donnera également des résultats de minoration relatifs à la mesure de Mahler. Au fil de l’exposé, on revisitera ainsi des résultats classiques relatifs aux polynômes de $\mathbb{Z}[X]$, qu’on généralisera aux polynômes à coefficients complexes.

Par exemple, un théorème de A. Schinzel montre que tout polynôme $P$ de $\mathbb{Z}[X]$, totalement réel, de degré $d$, vérifiant $P(-1)P(1)\not=0$, $\vert P(0)\vert=1$, est tel que
\[M(P)\ge \Big(\frac{1+\sqrt 5}{2}\Big)^\frac{d}{2}.\]
Nous montrons que si un polynôme $P$ de $\mathbb{C}[X]$ possède $m\geq 1$ racines réelles et satisfait $P(-1)P(0)P(1) \neq 0$, alors
\[M(P)\ge \Bigg(\frac{\vert P(1)P(-1)\vert^{\frac{1}{m}}+\left(4^{\frac{d}{m}}\vert P(0)\vert^{\frac{2}{m}}+\vert P(1)P(-1)\vert^{\frac{2}{m}}\right)^{\frac{1}{2}}}{2^{\frac{d}{m}}}\Bigg)^{\frac{m}{2}}.\]


On probabilistic generalizations of the Nyman-Beurling criterion for the Zeta function

18 novembre 2021 10:45-11:45 - Salle Döblin
Oratrice ou orateur : Sébastien Darses (Aix-Marseille Université) - Séminaire commun ATN+PS
Résumé :

Séminaire commun avec l’équipe PS

One of the seemingly innocent reformulations of the terrifying Riemann Hypothesis (RH) is the Nyman-Beurling criterion: The indicator function of (0,1) can be linearly approximated in a L^2 space by dilations of the fractional part function. Randomizing these dilations generates new structures and criteria for RH, regularizing very intricate ones. One other possible nice feature is to consider polynomials instead of Dirichlet polynomials for the approximations. How then are the huge difficulties reallocated? The answers are quite surprising!

The talk will be very accessible, especially for graduate students.
Joint work with F. Alouges and E. Hillion.


Construction d'un nombre normal tel que son inverse soit également normal

21 octobre 2021 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Manfred Madritsch (IECL)
Résumé :

Soit $b\geq2$ un entier et $\mathcal{N}_b=\{0,1,\ldots,b-1\}$ l’ensemble des chiffres associé. Tout nombre réel $x\in[0,1]$ admet une représentation de la forme \[x=\sum_{k\geq1} a_kb^{-k}=0.a_1a_2a_3\ldots,\] avec $a_k\in\mathcal{N}_b$. Le nombre $x$ est dit normal en base $b$ si pour tout entier $\ell\geq1$ toute suite $d_1\ldots d_\ell$ de longueur $\ell$ d’éléments de $\mathcal{N}_b$ a la même fréquence d’apparitions $b^{-\ell}$, i.e. \[\lim_{n\to\infty}\frac1n \#\left\{0\leq k< n\colon a_{k+1}=d_1,\ldots,a_{k+\ell}=d_\ell\right\} =b^{-\ell}. \]

Michel Mendés France a demandé s’il existe un nombre réel $x$ tel que $x$ et $1/x$ soient normaux en base $2$. Dans cet exposé nous allons construire un tel nombre et montrer qu’il est calculable. En particulier, nous allons montrer que $x$ et $1/x$ sont normaux en toute base $b\geq2$ et également normaux par rapport à l’écriture en fraction continue.

Il s’agit d’un travail en commun avec Verónica Becher de l’Université de Buenos Aires.


Ensembles de Sidon

14 octobre 2021 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Robin Riblet (IECL)
Résumé :

Un ensemble de Sidon d’un semi-groupe est un ensemble dont toutes les sommes de deux éléments sont distinctes. Des travaux de Bose, Chowla et Erdős établissent que le cardinal maximal d’un ensemble de Sidon dans un intervalle d’entiers de cardinal $n$ est équivalent à $\sqrt{n}$. Nous nous intéresserons au cardinal maximal d’un ensemble de Sidon dans l’union (de cardinal $n$) de deux intervalles. Un résultat d’Abbott affirme qu’il est supérieur à $0,0805\sqrt{n}$. Nous améliorerons cette borne et prouverons que ce cardinal est en fait supérieur à $0,8444\sqrt{n}$. Nous parlerons également d’autres résultats à propos des ensembles de Sidon et d’une de leurs généralisations : les ensembles $B_2[g]$.


Approximation rationnelle des nombres sturmiens

30 septembre 2021 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Yann Bugeaud
Résumé :

Soient $\theta$ et $\rho$ des nombres réels avec $0 \le \theta, \rho < 1$ et $\theta$ irrationnel. Pour $n \ge 1$, posons $$ s_n := s_n (\theta, \rho) = \big\lfloor n \theta + \rho \big\rfloor – \big\lfloor (n-1) \theta + \rho \big\rfloor $$ Alors, le mot infini $$ {\bf s}_{\theta, \rho} := s_1 s_2 s_3 \ldots $$ est le mot sturmien (inférieur) de pente $\theta$ et d’intercept $\rho$, écrit sur l’alphabet $\{0, 1\}$. Nous explicitons le développement en fraction continue du nombre réel $$ \xi_{b, \theta, \rho} = (b-1) \, \sum_{n \ge 1} \, {s_n (\theta, \rho) \over b^n}. $$ Cela nous permet d’obtenir une formule donnant son exposant d’irrationalité en fonction de $\theta$ et du développement d’Ostrowski de $\rho$ en base $\theta$. Nous étendons ainsi un résultat classique de Böhmer (1927) qui ne couvre que le cas où $\rho = \theta$ et contient par exemple la surprenante égalité $$ \sum_{j \ge 1} {1 \over 2^{\lfloor j \gamma \rfloor} } = [0; 1, 2, 2, 2^2, 2^3, 2^5, 2^8, 2^{13}, 2^{21}, \ldots ], \quad \gamma = {1 + \sqrt{5} \over 2}. $$ Il s’agit d’un travail en commun avec Michel Laurent.


Factorisations des normes d'entiers algébriques et suites à somme nulle avec poids

1 juillet 2021 14:30-15:30 - Salle Döblin
Oratrice ou orateur : Schmid Wolfgang
Résumé :

Soit $O_K$ l’anneau d’entiers algébriques d’un corps de nombres. Pour $a \in O_K \setminus \{0\}$ soit $N(a)$ la norme absolue de $a$, et $M = \{N(a) \colon a \in O_K \setminus \{0\} \}$. Il est bien connu que $M$ est un sous-semi-groupe multiplicatif de $\mathbb{N}^{\ast}$. Nous essayons de comprendre l’arithmétique de ces semi-groupes. Cela nous amène à étudier des suites à somme nulle pondérée sur des groupes abéliens finis.

Travaux en commun avec Safia Boukheche, Kamil Merito et Oscar Ordaz.


Small prime power residues modulo $p$

20 mai 2021 14:45-15:45 - Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur : Kübra Benli
Résumé :

Let $p$ be a prime number. For each positive integer $k\geq 2$, it is widely believed that the smallest prime that is a $k$th power residue modulo $p$ should be $O(p^{\epsilon})$, for any $\epsilon>0$. Elliott proved that such a prime is at most $p^{\frac{k-1}{4}+\epsilon}$, for each $\epsilon>0$. In this talk we discuss the distribution of prime $k$th power residues modulo $p$ in the range $[1, p]$, with a more emphasis on the subrange $[1,p^{\frac{k-1}{4}+\epsilon}]$ for $\epsilon>0$.


Deux applications du théorème de Macaulay à la Combinatoire additive

22 avril 2021 14:30-15:30 - Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur : Shalom Eliahou (Université du Littoral)
Résumé :

Un théorème classique de Macaulay en Algèbre commutative (1927) caractérise les fonctions de Hilbert des algèbres graduées standard. Ce théorème a des conséquences remarquables en Combinatoire additive, comme cela n’a été observé que tout récemment. L’objet de l’exposé est de montrer deux telles applications, sur la conjecture de Wilf portant sur les semigroupes numériques, et sur la croissance des ensembles sommes itérés dans un groupe abélien.


Répartition des fonctions multiplicatives dans les progressions arithmétiques de grands modules et applications

15 avril 2021 14:30-15:30 - Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur : Gérald Tenenbaum (IECL)
Résumé :
Nous décrirons le contenu d’un récent travail en collaboration avec Étienne Fouvry, et consacré à l’obtention de nouvelles estimations de type Bombieri-Vinogradov pour une classe étendue de fonctions arithmétiques multiplicatives et à la déduction de plusieurs applications, notamment : une nouvelle preuve d’un théorème de Drappeau et Topacogullari relatif à des corrélations arithmétiques ; un théorème de type Erdős-Wintner dont le support est un ensemble de niveau d’une fonction additive pour un argument décalé ; un théorème général de type Erdős-Kac pour le même type de support; une loi du logarithme itéré pour la répartition des facteurs premiers des entiers pondérés par $\tau(n-1)$, où $\tau$ désigne la fonction nombre de diviseurs.

Multiplicative orders mod $p$

8 avril 2021 14:30-15:30 - Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur : Paul Pollack (University of Georgia)
Résumé :

I will survey what is known about the distribution of the orders of integers mod $p$, as $p$ varies. Particular attention will be paid to problems of the following sort: For fixed $a$ and $b$, how do the order of $a$ mod $p$ and the order of $b$ mod $p$ compare, as $p$ varies? The proofs will draw from the elementary, algebraic, and analytic strands of number theory. (So hopefully something for everyone!)


Modular zeros in the character table of the symmetric group

1 avril 2021 15:30-16:30 - Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur : Sarah Peluse (IAS/Princeton)
Résumé :
In 2017, Miller conjectured, based on computational evidence, that for any fixed prime $p$ the density of entries in the character table of $S_n$ that are divisible by $p$ goes to $1$ as $n$ goes to infinity. I’ll describe a proof of this conjecture, which is joint work with K. Soundararajan. I will also discuss the (still open) problem of determining the asymptotic density of zeros in the character table of $S_n$, where it is not even clear from computational data what one should expect.

1 2 3 4 5 6 7 8 9 10 11 12