The existence of primitive pair over finite fields Jyotsna Sharma

(Joint work with S. Laishram and R. Sarma)

32 émes Journées Arithmétiques 2023, Nancy(France)

Department of Mathematics Indian Institute of Technology Delhi, India

July 4, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Notations

- $\mathbb{F}^{\times} := \mathbb{F} \{0\}$ for a field \mathbb{F} .
- $\bullet~\phi$ is the Euler's totient function.
- μ is the Mobius function.
- \hat{G} is the group of characters of the group G.
- $\omega(m)$ is number of distinct prime divisors of m.
- $W(m) = 2^{\omega(m)}$ is number of square free divisors of m.

イロト 不得下 イヨト イヨト 二日

Basic Definitions

Character

Let G be a finite abelian group with identity e. A character χ of G is a homomorphism from G into \mathbb{C}^{\times} .

$$\chi: \mathcal{G} \longrightarrow \mathbb{C}^{\times}.$$

that is,

- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in G$.
- Among the characters of G, the trivial character of G is χ_1 with $\chi_1(a) = 1$, for all $a \in G$.
- The order of a character χ is the least positive integer d such that $\chi^d = \chi_1$.

•
$$|\widehat{G}| = |G|.$$

3/22

イロト 不得下 イヨト イヨト 二日

Some basic results

Theorem

If χ is a non-trivial character of a finite abelian group G, then

$$\sum_{\mathsf{a}\in \mathsf{G}}\chi(\mathsf{a})=\mathsf{0}.$$

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some basic results

Theorem

If χ is a non-trivial character of a finite abelian group G, then

$$\sum_{\mathsf{a}\in \mathsf{G}}\chi(\mathsf{a})=0.$$

Theorem

If $a \in G$ is a non trivial element and \widehat{G} is the group of all characters of group G, then

$$\sum_{\chi\in\widehat{G}}\chi(a)=0.$$

Jyotsna !	Sharma ((II	Т	Del	hi)
-----------	----------	-----	---	-----	-----

Э

イロト イポト イヨト イヨト

Definitions

Primitive element

An element is said to be a primitive element over \mathbb{F}_q if it generates \mathbb{F}_q^{\times} .

• For $f \in \mathbb{F}_q(x)$, we call $(\alpha, f(\alpha))$ a primitive pair in \mathbb{F}_q if both α and $f(\alpha)$ are primitive elements of \mathbb{F}_q .

イロト 人間ト イヨト イヨト

Definitions

Primitive element

An element is said to be a primitive element over \mathbb{F}_q if it generates \mathbb{F}_q^{\times} .

• For $f \in \mathbb{F}_q(x)$, we call $(\alpha, f(\alpha))$ a primitive pair in \mathbb{F}_q if both α and $f(\alpha)$ are primitive elements of \mathbb{F}_q .

u - free element

For u a divisor of q - 1, an element $\alpha \in \mathbb{F}_q$ is called u - free, if $\alpha = \beta^d$, where $\beta \in \mathbb{F}_q$ and d|u, $\implies d = 1$.

• Note that an element α is primitive iff it is (q-1) - free.

イロト 不得下 イヨト イヨト 二日

The following assertion is a particular case of [10, Lemma 10], given by Shuqin et. al. (2004).

Lemma

Let u be a divisor of q-1 and let $\alpha \in \mathbb{F}_q^{\times}$. Then

$$\sum_{I|u} \frac{\mu(I)}{\varphi(I)} \sum_{\chi_I} \chi_I(\alpha) = \begin{cases} \frac{u}{\varphi(u)} & \text{if } \alpha \text{ is } u\text{-free,} \\ 0 & \text{otherwise.} \end{cases}$$

Jyotsna Sharma (IIT Delhi)

July 14, 2023 6 / 22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Characteristic function for the subset of *u*-free elements of \mathbb{F}_{a}^{\times}

For each divisor u of q-1, the characteristic function for the subset of u-free elements of \mathbb{F}_q^{\times} is a map $\rho_u : \mathbb{F}_q^{\times} \longrightarrow \{0,1\}$ defined by

$$\rho_{u}: \alpha \longmapsto \theta(u) \sum_{d|u} \frac{\mu(d)}{\phi(d)} \sum_{\chi_{d}} \chi_{d}(\alpha),$$
(1)

where $\theta(u) = \frac{\phi(u)}{u}$ and χ_d denotes the multiplicative character of \mathbb{F}_q of order d.

Jyotsna S	harma ((1	IT .	Del	lhi)	
-----------	---------	----	------	-----	------	--

イロト 不得 トイヨト イヨト 二日

Exceptional Rational function

We say that a rational function $f \in \mathbb{F}_q(x)$ is exceptional if $f = cx^i g^d$ for some $c \in \mathbb{F}_q$, $i \in \mathbb{Z}$, $g \in \mathbb{F}_q(x)$ and d > 1 divides q - 1.

イロト 不得 トイラト イラト 二日

Literature Survey

In 2020, Cohen et al. [3] gave the following result for a general (n_1, n_2) -function. For each positive integer n, let

- $\mathbf{R}_n := \{ f = f_1/f_2, \text{ non-exceptional rational functions over } \mathbb{F}_q \text{ of degree sum } n \text{ that is, } n = n_1 + n_2 \text{ and with } (f_1, f_2) = 1 \}.$
- $\mathbf{Q}_n := \{q, \text{ a prime power s.t. for every } f \in \mathbf{R}_n \text{ there exists a primitive element } \alpha \text{ (depending on } f) \text{ in } \mathbb{F}_q \text{ such that } f(\alpha) \text{ is also primitive in } \mathbb{F}_q \}.$

Literature Survey

In 2020, Cohen et al. [3] gave the following result for a general (n_1, n_2) -function. For each positive integer n, let

- $\mathbf{R}_n := \{ f = f_1/f_2, \text{ non-exceptional rational functions over } \mathbb{F}_q \text{ of degree sum } n \text{ that is, } n = n_1 + n_2 \text{ and with } (f_1, f_2) = 1 \}.$
- Q_n:= {q, a prime power s.t. for every f ∈ R_n there exists a primitive element α (depending on f) in F_q such that f(α) is also primitive in F_q}.

2020, S.D.Cohen et al.

Let $n \ge 2$, and q be a prime power. Suppose that

 $q^{\frac{1}{2}} > nW(q-1)^2.$

Then $q \in \mathbf{Q}_n$.

Jyotsna Sharma (IIT Delhi)

э

Sac

9/22

イロト 不得 トイヨト イヨト

Literature survey

We will use the following result of Weil [11], as described in [1].; (1948)

Lemma

Let $F(x) \in \mathbb{F}_q(x)$ be a rational function. Suppose $F(x) = \prod_{j=1}^k f_j(x)^{r_j}$, where $f_j \in \mathbb{F}_q[x]$ is an irreducible polynomial and $r_j \in \mathbb{Z} \setminus \{0\}$ for $1 \leq j \leq k$. Let χ be a multiplicative character of \mathbb{F}_q . Suppose that the rational function F(x) is not of the form $cH(x)^{ord(\chi)} \in \mathbb{F}_q(x)$ for some $H(x) \in \mathbb{F}_q(x)$ and $c \in \mathbb{F}_q^{\times}$, where $ord(\chi)$ is the order of χ . Then we have

$$\sum_{lpha \in \mathbb{F}_q, F(lpha)
eq \infty} \chi(F(lpha)) igg| \leq igg(\sum_{j=1}^k \deg(f_j) - 1 igg) q^{rac{1}{2}}.$$

10 / 22

イロト イポト イヨト イヨト 二日

Inequality due to Robin [7, Theorem 11];

Lemma For all $n \ge 3$, $\omega(n) \le \frac{1.38402 \log n}{\log \log n}$.

Jyotsna Sharma (IIT Delhi)

July 14, 2023 11 / 22

200

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define,

- $\mathcal{R}_n := \{f = f_1/f_2, \text{ even or odd non-exceptional rational functions over } \mathbb{F}_q \text{ of degree sum } n \text{ that is, } n = n_1 + n_2 \text{ and with } (f_1, f_2) = 1 \}.$
- Q_n:={ q, a prime power with q ≡ 3 (mod 4) s.t. for every f ∈ R_n there exists a primitive element α (depending on f) in F_q such that f(α) is also primitive in F_q}.

イロト イ理ト イヨト イヨト

Define,

- $\mathcal{R}_n := \{f = f_1/f_2, \text{ even or odd non-exceptional rational functions over } \mathbb{F}_q \text{ of degree sum } n \text{ that is, } n = n_1 + n_2 \text{ and with } (f_1, f_2) = 1 \}.$
- Q_n:={ q, a prime power with q ≡ 3 (mod 4) s.t. for every f ∈ R_n there exists a primitive element α (depending on f) in F_q such that f(α) is also primitive in F_q}.

Lemma

If χ_d is a multiplicative character of \mathbb{F}_q^{\times} of even order d and $q \equiv 3 \pmod{4}$, then $\chi_d(-1) = -1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• $N_f(m_1, m_2) := |\{ \alpha \in \mathbb{F}_q : \alpha \text{ is } m_1 \text{- free and } f(\alpha) \text{ is } m_2 \text{- free, for } m_1, m_2 \text{ divisors of } q - 1. \}|$

• $N_f(m_1, m_2) := |\{ \alpha \in \mathbb{F}_q : \alpha \text{ is } m_1 \text{- free and } f(\alpha) \text{ is } m_2 \text{- free, for } m_1, m_2 \text{ divisors of } q - 1. \}|$

$$N_f(m_1, m_2) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \rho_{m_1}(\alpha) \rho_{m_2}(f(\alpha))$$

• $N_f(m_1, m_2) := |\{ \alpha \in \mathbb{F}_q : \alpha \text{ is } m_1 \text{- free and } f(\alpha) \text{ is } m_2 \text{- free, for } m_1, m_2 \text{ divisors of } q - 1. \}|$

$$N_f(m_1, m_2) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \rho_{m_1}(\alpha) \rho_{m_2}(f(\alpha))$$

$$N_f(m_1, m_2) = \theta(m_1)\theta(m_2) \sum_{d_1|m_1, d_2|m_2} \frac{\mu(d_1)}{\varphi(d_1)} \frac{\mu(d_2)}{\varphi(d_2)} \sum_{\chi_{d_1}, \chi_{d_2}} \chi_f(\chi_{d_1}, \chi_{d_2})$$

where,
$$\chi_f(\chi_{d_1}, \chi_{d_2}) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \chi_{d_1}(\alpha) \chi_{d_2}(f(\alpha)).$$

• $N_f(m_1, m_2) := |\{ \alpha \in \mathbb{F}_q : \alpha \text{ is } m_1 \text{- free and } f(\alpha) \text{ is } m_2 \text{- free, for } m_1, m_2 \text{ divisors of } q - 1. \}|$

$$N_f(m_1, m_2) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \rho_{m_1}(\alpha) \rho_{m_2}(f(\alpha))$$

$$N_f(m_1, m_2) = \theta(m_1)\theta(m_2) \sum_{d_1|m_1, d_2|m_2} \frac{\mu(d_1)}{\varphi(d_1)} \frac{\mu(d_2)}{\varphi(d_2)} \sum_{\chi_{d_1}, \chi_{d_2}} \chi_f(\chi_{d_1}, \chi_{d_2})$$

where,
$$\chi_f(\chi_{d_1}, \chi_{d_2}) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \chi_{d_1}(\alpha) \chi_{d_2}(f(\alpha)).$$

CASE 1: If f is an odd rational function and exactly one of d₁ or d₂ is even.
CASE 2: If f is an even rational function and d₁ is even.

Jyotsna Sharma (IIT Delhi)

July 14, 2023 13 / 22

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

• $N_f(m_1, m_2) := |\{ \alpha \in \mathbb{F}_q : \alpha \text{ is } m_1 \text{- free and } f(\alpha) \text{ is } m_2 \text{- free, for } m_1, m_2 \text{ divisors of } q - 1. \}|$

$$N_f(m_1, m_2) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \rho_{m_1}(\alpha) \rho_{m_2}(f(\alpha))$$

$$N_f(m_1, m_2) = \theta(m_1)\theta(m_2) \sum_{d_1|m_1, d_2|m_2} \frac{\mu(d_1)}{\varphi(d_1)} \frac{\mu(d_2)}{\varphi(d_2)} \sum_{\chi_{d_1}, \chi_{d_2}} \chi_f(\chi_{d_1}, \chi_{d_2})$$

where,
$$\chi_f(\chi_{d_1}, \chi_{d_2}) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \chi_{d_1}(\alpha) \chi_{d_2}(f(\alpha)).$$

- CASE 1: If f is an odd rational function and exactly one of d_1 or d_2 is even.
- CASE 2: If f is an even rational function and d₁ is even.
- $\chi_f(\chi_{d_1},\chi_{d_2}) = -\chi_f(\chi_{d_1},\chi_{d_2}) \Longrightarrow \chi_f(\chi_{d_1},\chi_{d_2}) = 0.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

• $N_f(m_1, m_2) := |\{ \alpha \in \mathbb{F}_q : \alpha \text{ is } m_1 \text{- free and } f(\alpha) \text{ is } m_2 \text{- free, for } m_1, m_2 \text{ divisors of } q - 1. \}|$

$$N_f(m_1, m_2) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \rho_{m_1}(\alpha) \rho_{m_2}(f(\alpha))$$

$$N_f(m_1, m_2) = \theta(m_1)\theta(m_2) \sum_{d_1|m_1, d_2|m_2} \frac{\mu(d_1)}{\varphi(d_1)} \frac{\mu(d_2)}{\varphi(d_2)} \sum_{\chi_{d_1}, \chi_{d_2}} \chi_f(\chi_{d_1}, \chi_{d_2})$$

where,
$$\chi_f(\chi_{d_1}, \chi_{d_2}) = \sum_{\alpha \in \mathbb{F}_q \setminus S_f} \chi_{d_1}(\alpha) \chi_{d_2}(f(\alpha)).$$

- CASE 1: If f is an odd rational function and exactly one of d₁ or d₂ is even.
- CASE 2: If f is an even rational function and d_1 is even.

•
$$\chi_f(\chi_{d_1},\chi_{d_2}) = -\chi_f(\chi_{d_1},\chi_{d_2}) \Longrightarrow \chi_f(\chi_{d_1},\chi_{d_2}) = 0.$$

• $N_f(m_1, m_2) > 0$ whenever $q^{\frac{1}{2}} \geq \frac{nW(m_1)W(m_2)}{2}$.

Jyotsna Sharma (IIT Delhi)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Results

Theorem 1

Suppose $n \in \mathbb{N}$, $n \ge 2$ and $q \equiv 3 \pmod{4}$ is a prime power. Then

$$q^{rac{1}{2}} \geq rac{nW(q-1)^2}{2} \Longrightarrow q \in \mathcal{Q}_n.$$
 (2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Results

Theorem 1

Suppose $n \in \mathbb{N}$, $n \ge 2$ and $q \equiv 3 \pmod{4}$ is a prime power. Then

$$q^{\frac{1}{2}} \ge \frac{nW(q-1)^2}{2} \Longrightarrow q \in \mathcal{Q}_n.$$
 (2)

The following result is the sieve variation of Theorem 1.

Theorem 2

Let e|(q-1), and let $\{p_1, p_2, ..., p_r\}$ be the collection of all primes dividing (q-1) but not dividing e. Suppose $\delta := 1 - 2\sum_{i=1}^{r} \frac{1}{p_i} > 0$ and set $\Delta = \frac{(2r-1)}{\delta} + 2$. Then

$$q^{rac{1}{2}} \geq rac{n\Delta W(e)^2}{2} \Longrightarrow q \in \mathcal{Q}_n.$$
 (3)

Image: A matrix a

DQA

14 / 22

э

For the proof of Theorem2, we require the following lemma which give an upper bound for the absolute value of $N_f(pe, e) - \theta(p)N_f(e, e)$ and $N_f(e, pe) - \theta(p)N_f(e, e)$.

Lemma

Let e be a positive integer that divides q - 1 and let p be a prime that divides q - 1 but not e. If $f \in \mathcal{R}_n$ and $q \equiv 3 \pmod{4}$, then

$$|N_f(pe,e)- heta(p)N_f(e,e)|\leq rac{ heta(e)^2 heta(p)}{2}nq^{rac{1}{2}}W(e)^2$$

and

$$|N_f(e,pe)-\theta(p)N_f(e,e)| \leq \frac{\theta(e)^2\theta(p)}{2}nq^{\frac{1}{2}}W(e)^2.$$

イロト イポト イヨト イヨト 二日

Lemma

Let e be a positive integer that divides q - 1 and let $\{p_1, p_2, \ldots, p_r\}$ be the collection of all primes that divides q - 1 but not e. Then

$$N_f(q-1,q-1) \ge \sum_{i=1}^r N_f(p_ie,e) + \sum_{i=1}^r N_f(e,p_ie) - (2r-1)N_f(e,e).$$

Hence,

$$egin{aligned} & \mathcal{N}_f(q-1,q-1) \geq \sum_{i=1}^r (\mathcal{N}_f(p_i e, e) - heta(p_i) \mathcal{N}_f(e, e)) + \sum_{i=1}^r (\mathcal{N}_f(e, p_i e) - heta(p_i)) & \ & \{1 - 2\sum_{i=1}^r (1 - heta(p_i))\} imes \mathcal{N}_f(e, e). \end{aligned}$$

Jyotsna Sharma (IIT Delhi)

イロト イボト イヨト イヨト

Э

We have
$$q \in Q_n$$
 if
 $q^{\frac{1}{2}} \ge \frac{nW(q-1)^2}{2} \iff \log q \ge 2\log n + 4\omega(q-1)\log 2 - 2\log 2.$
which holds if,

$$\left(1-\frac{5.5361\log 2}{\log\log q}\right)\frac{\log q}{2\log(\frac{n}{2})}\geq 1.$$

July 14, 2023 17 / 22

We have
$$q \in \mathcal{Q}_n$$
 if
 $q^{\frac{1}{2}} \ge \frac{nW(q-1)^2}{2} \iff \log q \ge 2\log n + 4\omega(q-1)\log 2 - 2\log 2.$

which holds if,

$$\left(1-\frac{5.5361\log 2}{\log\log q}\right)\frac{\log q}{2\log(\frac{n}{2})}\geq 1.$$

Theorem 3

Suppose $n \in \mathbb{N}$, $n \ge 2$ and q is a prime power such that $q \equiv 3 \pmod{4}$. Let $n_0 = 2(\exp(2^{2 \times 4.5361}))$. Then

$$q \geq \begin{cases} (\frac{n}{2})^4 & \text{if } n \geq n_0, \\ \max\{(\frac{n}{2})^8, \exp(2^{\frac{4}{3} \times 5.5361})\} & \text{if } n < n_0, \end{cases}$$

implies $q \in Q_n$.

Jyotsna Sharma (IIT Delhi)

(4)

The following result is an analogue of the Theorem 3 for functions which are not necessarily even or odd; needless to say that it is a consequence of [3, Theorem 3.3].

Theorem 4

Let q be a prime power, $n \ge 2$ be an integer and let $f(x) \in \mathbb{F}_q(x)$ be a non-exceptional rational function of degree sum n. Set $\gamma = 0.9998$ and $n_0 = 2\gamma^{-1} \exp(2^{2 \times 4.5361})$. If

$$q \geq egin{cases} (n\gamma)^4 & ext{if } n \geq n_0, \ \max\{(n\gamma)^8, \exp(2^{rac{4}{3} imes 5.5361})\} & ext{if } n < n_0, \end{cases}$$

then there exists $\alpha \in \mathbb{F}_q$ such that both α and $f(\alpha)$ are primitive in \mathbb{F}_q .

July 14, 2023	18 / 22
---------------	---------

(人間) トイヨト イヨト ニヨ

The minimum number of prime factors of q-1 required for \mathbb{F}_q to have a primitive pair is displayed in Table for certain degree sums of rational functions according to Theorem 3.1 in [3] and Theorem 1.

Degree sum (n)	2	3	4	5	6	7	8	9
$\omega(q-1)$ for general f	17	18	18	19	19	19	19	19
$\omega(q-1)$ for even or odd f	16	17	17	17	18	18	18	18

Table: Minimum value of $\omega(q-1)$ with respect to degree sum of f

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

The minimum number of prime factors of q-1 required for \mathbb{F}_q to have a primitive pair is displayed in Table for certain degree sums of rational functions according to Theorem 3.1 in [3] and Theorem 1.

Degree sum (n)	2	3	4	5	6	7	8	9
$\omega(q-1)$ for general f	17	18	18	19	19	19	19	19
$\omega(q-1)$ for even or odd f	16	17	17	17	18	18	18	18

Table: Minimum value of $\omega(q-1)$ with respect to degree sum of f

For example, for a general non-exceptional rational function of degree sum 3, we require $q \ge 1.173 \times 10^{23}$ whereas for an even or an odd non-exceptional rational function function of degree sum 3, we require $q \ge 1.923 \times 10^{21}$.

July 14, 2023 19 / 22

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Bibliography I

- [1] Cochrane, T., Pinner, C. Using Stepanov's method for exponential sums involving rational functions. *J. Number Theory* 116(2):270-292, 2006.
- [2] Cohen, S. D. Consecutive primitive roots in a finite field. Proc. Amer. Math. Soc. 93(2):189-197, 1985.
- [3] Cohen, S .D., Sharma, H., Sharma, R. K. Primitive values of rational functions at primitive elements of a finite field. *J. Number Theory* 219:237-246, 2021.
- [4] Cohen, S. D., Silva, T. O. e., Sutherland, N., Trudgian, T. A proof of the conjecture of Cohen and Mullen on sums of primitive roots. *Math. Comput.* 84 (296):2979-2986,2015.
- [5] Fu, L., Wan, D. A class of incomplete character sums. Q. J. Math. 65(4):1195-1211, 2014.
- [6] Lidl, R., Niederreiter, H. *Finite Field*, Vol. 20. Cambridge (UK): Cambridge University Press, 1997.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Bibliography II

- [7] Robin, G. Estimation de la fonction de Tehebychef θ sur le k-ieme nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de *n. Acta Arithmetica*:367-389, 1983.
- [8] Sharma, R. K., Gupta, A. Pair of primitive elements with prescribed traces over finite fields. *Commun. Algebra* 47(3):1278-1286, 2019.
- [9] The Sage Developers, SageMath, the Sage mathematics software system (version 9.0), https:// www.sagemath.org, 2020.
- [10] Shuqin, F., Wenbao, H. Character sums over Galois rings and primitive polynomials over finite fields. *Finite Fields Appl.* 10(1):36-52, 2004.
- [11] Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. 34(5):204-207, 1948.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Jyotsna Sharma (IIT Delhi)