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Notations

F× := F− {0} for a field F.
ϕ is the Euler’s totient function.

µ is the Mobius function.

Ĝ is the group of characters of the group G .

ω(m) is number of distinct prime divisors of m.

W (m) = 2ω(m) is number of square free divisors of m.

Jyotsna Sharma (IIT Delhi) July 14, 2023 2 / 22



Basic Definitions

Character

Let G be a finite abelian group with identity e. A character χ of G is a
homomorphism from G into C×.

χ : G −→ C×.

that is,

χ(ab) = χ(a)χ(b) for all a, b ∈ G .

Among the characters of G , the trivial character of G is χ1 with
χ1(a) = 1, for all a ∈ G .

The order of a character χ is the least positive integer d such that
χd = χ1.

|Ĝ | = |G |.
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Some basic results

Theorem

If χ is a non-trivial character of a finite abelian group G, then∑
a∈G

χ(a) = 0.

Theorem

If a ∈ G is a non trivial element and Ĝ is the group of all characters of
group G , then ∑

χ∈Ĝ

χ(a) = 0.
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Definitions

Primitive element

An element is said to be a primitive element over Fq if it generates Fq
×.

For f ∈ Fq(x), we call (α, f (α)) a primitive pair in Fq if both α and
f (α) are primitive elements of Fq.

u - free element

For u a divisor of q − 1, an element α ∈ Fq is called u - free, if α = βd ,
where β ∈ Fq and d |u, =⇒ d = 1.

Note that an element α is primitive iff it is (q − 1) - free.
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The following assertion is a particular case of [10, Lemma 10], given by
Shuqin et. al. (2004).

Lemma

Let u be a divisor of q − 1 and let α ∈ F×
q . Then∑

l |u

µ(l)

φ(l)

∑
χl

χl(α) =

{ u
φ(u) if α is u-free,

0 otherwise.
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Characteristic function

Characteristic function for the subset of u-free elements of F×
q

For each divisor u of q − 1, the characteristic function for the subset of u-
free elements of F×

q is a map ρu : F×
q −→ {0, 1} defined by

ρu : α 7−→ θ(u)
∑
d |u

µ(d)

ϕ(d)

∑
χd

χd(α), (1)

where θ(u) =
ϕ(u)

u
and χd denotes the multiplicative character of Fq of

order d .
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Exceptional Rational function

We say that a rational function f ∈ Fq(x) is exceptional if f = cx igd for
some c ∈ Fq , i ∈ Z, g ∈ Fq(x) and d > 1 divides q − 1.
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Literature Survey

In 2020, Cohen et al. [3] gave the following result for a general (n1, n2)-
function. For each positive integer n, let

Rn:={f = f1/f2, non-exceptional rational functions over Fq of degree
sum n that is, n = n1 + n2 and with (f1, f2) = 1 }.
Qn:= {q, a prime power s.t. for every f ∈ Rn there exists a primitive
element α (depending on f ) in Fq such that f (α) is also primitive in
Fq}.

2020, S.D.Cohen et al.

Let n ≥ 2, and q be a prime power. Suppose that

q
1
2 > nW (q − 1)2.

Then q ∈ Qn.
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Literature survey

We will use the following result of Weil [11], as described in [1].;
(1948)

Lemma

Let F (x) ∈ Fq(x) be a rational function. Suppose F (x) =
∏k

j=1 fj(x)
rj ,

where fj ∈ Fq[x ] is an irreducible polynomial and rj ∈ Z \ {0} for
1 ≤ j ≤ k. Let χ be a multiplicative character of Fq. Suppose that the
rational function F (x) is not of the form cH(x)ord(χ) ∈ Fq(x) for some
H(x) ∈ Fq(x) and c ∈ F×

q , where ord(χ) is the order of χ. Then we have

∣∣∣∣ ∑
α∈Fq ,F (α)̸=∞

χ(F (α))

∣∣∣∣ ≤ ( k∑
j=1

deg(fj)− 1

)
q

1
2 .
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Literature survey

Inequality due to Robin [7, Theorem 11];

Lemma

For all n ≥ 3, ω(n) ≤ 1.38402 log n
log log n .
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Define,

Rn:={f = f1/f2, even or odd non-exceptional rational functions over
Fq of degree sum n that is, n = n1 + n2 and with (f1, f2) = 1 }.
Qn:={ q, a prime power with q ≡ 3 (mod 4) s.t. for every f ∈ Rn

there exists a primitive element α (depending on f ) in Fq such that
f (α) is also primitive in Fq}.

Lemma

If χd is a multiplicative character of F×
q of even order d and q ≡ 3

(mod 4), then χd(−1) = −1.
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Outline of proof

Nf (m1,m2) := |{α ∈ Fq : α is m1- free and f (α) is m2- free, for m1,m2 divisors of

q − 1.}|

Nf (m1,m2) =
∑

α∈Fq\Sf

ρm1(α)ρm2(f (α))

Nf (m1,m2) = θ(m1)θ(m2)
∑

d1|m1,d2|m2

µ(d1)

φ(d1)

µ(d2)

φ(d2)

∑
χd1

,χd2

χf (χd1 , χd2)

where, χf (χd1 , χd2) =
∑

α∈Fq\Sf

χd1(α)χd2(f (α)).

CASE 1: If f is an odd rational function and exactly one of d1 or d2 is even.

CASE 2: If f is an even rational function and d1 is even.

χf (χd1 , χd2) = −χf (χd1 , χd2) =⇒ χf (χd1 , χd2) = 0.

Nf (m1,m2) > 0 whenever q
1
2 ≥ nW (m1)W (m2)

2
.
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Results

Theorem 1

Suppose n ∈ N, n ≥ 2 and q ≡ 3 (mod 4) is a prime power. Then

q
1
2 ≥ nW (q − 1)2

2
=⇒ q ∈ Qn. (2)

The following result is the sieve variation of Theorem 1.

Theorem 2

Let e|(q − 1), and let {p1, p2, ..., pr} be the collection of all primes
dividing (q − 1) but not dividing e. Suppose δ := 1− 2

∑r
i=1

1
pi

> 0 and

set ∆ = (2r−1)
δ + 2. Then

q
1
2 ≥ n∆W (e)2

2
=⇒ q ∈ Qn. (3)
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Outline of the proof of Theorem2

For the proof of Theorem2, we require the following lemma which give an
upper bound for the absolute value of Nf (pe, e)− θ(p)Nf (e, e) and
Nf (e, pe)− θ(p)Nf (e, e).

Lemma

Let e be a positive integer that divides q − 1 and let p be a prime that
divides q − 1 but not e. If f ∈ Rn and q ≡ 3 (mod 4), then

|Nf (pe, e)− θ(p)Nf (e, e)| ≤
θ(e)2θ(p)

2
nq

1
2W (e)2

and

|Nf (e, pe)− θ(p)Nf (e, e)| ≤
θ(e)2θ(p)

2
nq

1
2W (e)2.
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Outline of the proof of Theorem2

Lemma

Let e be a positive integer that divides q − 1 and let {p1, p2, . . . , pr} be
the collection of all primes that divides q − 1 but not e. Then

Nf (q − 1, q − 1) ≥
r∑

i=1

Nf (pie, e) +
r∑

i=1

Nf (e, pie)− (2r − 1)Nf (e, e).

Hence,

Nf (q − 1, q − 1) ≥
r∑

i=1

(Nf (pie, e)− θ(pi )Nf (e, e)) +
r∑

i=1

(Nf (e, pie)− θ(pi )Nf (e, e))+

{1− 2
r∑

i=1

(1− θ(pi ))} × Nf (e, e).
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Outline of the proof of Theorem2

We have q ∈ Qn if

q
1
2 ≥ nW (q − 1)2

2
⇐⇒ log q ≥ 2 log n + 4ω(q − 1) log 2− 2 log 2.

which holds if, (
1− 5.5361 log 2

log log q

)
log q

2 log(n2 )
≥ 1.

Theorem 3

Suppose n ∈ N, n ≥ 2 and q is a prime power such that q ≡ 3 (mod 4).
Let n0 = 2(exp(22×4.5361). Then

q ≥

{
(n2 )

4 if n ≥ n0,

max{(n2 )
8, exp(2

4
3
×5.5361)} if n < n0,

(4)

implies q ∈ Qn.

Jyotsna Sharma (IIT Delhi) July 14, 2023 17 / 22



Outline of the proof of Theorem2

We have q ∈ Qn if

q
1
2 ≥ nW (q − 1)2

2
⇐⇒ log q ≥ 2 log n + 4ω(q − 1) log 2− 2 log 2.

which holds if, (
1− 5.5361 log 2

log log q

)
log q

2 log(n2 )
≥ 1.

Theorem 3

Suppose n ∈ N, n ≥ 2 and q is a prime power such that q ≡ 3 (mod 4).
Let n0 = 2(exp(22×4.5361). Then

q ≥

{
(n2 )

4 if n ≥ n0,

max{(n2 )
8, exp(2

4
3
×5.5361)} if n < n0,

(4)

implies q ∈ Qn.

Jyotsna Sharma (IIT Delhi) July 14, 2023 17 / 22



The following result is an analogue of the Theorem 3 for functions which
are not necessarily even or odd; needless to say that it is a consequence of
[3, Theorem 3.3].

Theorem 4

Let q be a prime power, n ≥ 2 be an integer and let f (x) ∈ Fq(x) be a
non-exceptional rational function of degree sum n. Set γ = 0.9998 and
n0 = 2γ−1 exp(22×4.5361). If

q ≥

{
(nγ)4 if n ≥ n0,

max{(nγ)8, exp(2
4
3
×5.5361)} if n < n0,

then there exists α ∈ Fq such that both α and f (α) are primitive in Fq.

Jyotsna Sharma (IIT Delhi) July 14, 2023 18 / 22



The minimum number of prime factors of q − 1 required for Fq to have a
primitive pair is displayed in Table for certain degree sums of rational
functions according to Theorem 3.1 in [3] and Theorem 1.

Degree sum (n) 2 3 4 5 6 7 8 9

ω(q − 1) for general f 17 18 18 19 19 19 19 19

ω(q − 1) for even or odd f 16 17 17 17 18 18 18 18

Table: Minimum value of ω(q − 1) with respect to degree sum of f

For example, for a general non-exceptional rational function of degree sum
3, we require q ≥ 1.173× 1023 whereas for an even or an odd
non-exceptional rational function function of degree sum 3, we require
q ≥ 1.923× 1021.
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