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(Hecke) continued fractions

Some notation

The following elements generate PSL(2,7) :

0 —1 1 —1 1 1
S (1 O)and 3 (1 ()) so that L;$ (O 1)

and induce the isomorphism : PSL(2,Z) = (Z/21) * (Z./3Z)

= (1)

is not an element of PSL(2,7), but satishies : U(L;S)U = ngS.

The element



(Hecke) continued fractions

The Mobius action

The group PSL(2,R) acts on the upper half plane:

(p Q).ZI_)PZ‘FQ
res rz + s

This action can be extended to the boundary R U {0 }.

We have:
0O 1 1 1 n
U-z (1 O) ¢ 7 (L3) -2 (() 1) ¢= T



(Hecke) continued fractions

Continued fractions as words in U, Land S

A standard continued fraction can be interpreted as :

lag; a, ay, ... ] = ag + , withay € Z,a,,a,,... € L,

1
Cl1+

Clz+%

= (LS)® 1

612+T1.

Cl1+

— (L3S)aOU Cll +

1
a2+7

= (L53S)DUL5S)UU5S5)"U...



(Hecke) continued fractions

Continued fractions as words in L. and S

The identity U(L;S)U = L3zS further gives : U(L;$)"U = (L3ZS)”. So :
(do; dy, o, ... ] = ((Lgs)ao( U(LyS)“U) )(L3S)%U. §
= ((L3S)"(L;S)™) ((L3S)™(L5S)®)...

Conclusion: to every continued fraction corresponds a word in S, L;( and L32).



(Hecke) continued fractions

Continued fractions as elements of a completion

Each infinite continued fraction is identified with the corresponding infinite word in
S, L and L? (or corresponding infinite path on bipartite Farey tree starting at /).

Each finite continued fraction is identified with the following infinite word on
bipartite Farey tree starting at / :

(LS)"0---(LS)4*+1(L*S)® and (LS)™---(LS)"(L>*S)(LS)®, (k even)
(LS)"---(L?S)*+1(LS)® and (LS)"---(L*S)*(LS)(L*S)®, (k odd)



(Hecke) continued fractions

Generalization

For any integer g > 3, the Hecke group H_ is generated by :

_ A—1
S = (1) (1) and 7, = f 0 , where 4, = cos(z/q) € R.For g = 3 we recover
PSL(2,7Z).

The above choice induces the isomorphism H, = Z/2Z.* 7./ qZ.

The corresponding continued fractions algorithm can be described explicitly as :

0. [input] a real number z, an integer ¢ > 2. Set word to be the empty word,

1. |[preliminary computations| Set ver= (very,...,ver, ;) to be the set of
finite vertices of P, and int= (inti,...,int,) to be the list of intervals
determined by the vertices of FP,.

2. [check] if = ver;, then set word= LI™*S and terminate the algorithm.
We get z = LI*+15(0).

3. [Euclidean step| if z € int;, then concatenate Lg_i“S to word, and set

x = SL, ' (x), P, = (L**'S)(P,) and update ver and int.

4. [Finished?| if x = 0, return word, else go to the Euclidean step.



(Hecke) continued fractions

Example

The output the algorithm is then a sequence of words in Lq, L;, e Lg_l and S

46333

50000
= (L2S)(LsS)*(L2S)(LsS)*(LsS)°

0,1,12,1,1,1,2,1,5,1,15,1,2] =

Of course, the matrix obtained from this argument is different :

6+3v/5 89+39/5
7+34v/5 94 +434/5



(Hecke) continued fractions

Generalization

As in the previous case, we may identify such continued fractions with infinite words in
L, L;, e Lg ~!1and S (or infinite paths on the corresponding Farey tree, denoted F ;-

and conversely, infinite words in this alphabet g determine a unique real number.
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The caseg =6



Picard group of a number field

Some notation

A number field K is a finite extension of Q.
Let Id(K)denote the multiplicative group of fractional ideals of K.

Given a number field K of degree n, there are n = r + 2s distinct embeddings of K into C. The first r of these are
called real embeddings as their image lie in R C C, and the next 2s of these are called complex embeddings. An

embedding o of K is identified with its complex conjugate & (an equivalence relation). There are r + s many such
classes.

We associate the etale algebra Ky := K @ R to the number field K. In K addition and multiplication are usual

componentwise addition and multiplication. As a vector space over R, K is isomorphic to R" X C°.

r \)
The unit group of Ky is Ki = H R* % H C~.
i=1 i=1



Picard group of a number field

The divisor class group

The norm map is defined as :
N :1d(K) X K; — R”

r+s

(I, gy sty ) > [Zg 2 1] H 1] 1wr?

i=r+1
The number field K can be embedded into Ky, (by sending each x € Kto (o/(x), ...,0,,.(x)) and into

1d(K) (by sending each x € K to the fractional ideal generated by x 1) :

The kernel of the norm map (denoted Div"(K)) contains the image of K and the cokernel of this map is
defined as the Picard group of K, Pic’(K).



Picard group of a number field

Structure of the Picard group

Theorem(Schoof, 2008) :
Pic’(K) = T" x CI*(K)

where T is a torus of dimension n — 1 and CI*(K) is the narrow class group of K. In
fact, T" is isomorphic to H/ 7 ., where H is a hyperplane in Ky.



Carks and the Picard Group

Periodic words, carks

The periodic words correspond to subgroups generated by one element, say W
(assumed to be primitive).

The quotient # /(W) is called a ¢ark. Its spine determines the ¢ark.

Q)
2

)

0
QO

0 QO

W = S[(LiS)X(LS)A(L3S)(LsS)°L;1S  (here g = 3) W =SILS)LES)LES)HLES)  (here g = 6)



Carks and the Picard Group

Faces of carks

A face of a gark determined by # /(W) is defined as a bi-infinite left (or right) turn
pathon & /(W).

W = S [(LiS)X(LS)A(L3S)(LsS)°L31 S
A face of a gark F /(W) is determined by its root. Notice : if the face is spinal, then it
has more than one root, otherwise it has a unique root.



Carks and the Picard Group

The case g =3

Theorem (Cakti, Z.)

Let g = 3. Given a ¢ark (i.e. a primitive periodic word in L;, L32 and S), there is a real
quadratic number field K = Q(\/Z ) and a map, denoted 1, from the set of edges of
the cark to the Picard group of K so that

1. if the cark does not have any symmetry, then 1 is injective

2. if the cark does have symmetry, then 1 is never injective.



Carks and the Picard Group

The case g =3

Theorem (Z.)

Let g > 3 be a prime number. Given a cark (i.e. a primitive periodic word in

L, .. .Lg_l and S), there is a relative quadratic extension of the real cyclotomic

number field K = Q(C, + C \/Z ) and a map, denoted 1, from the set of edges of
the cark to the Picard group of K so that

1. if the cark does not have any symmetry, then 1 is injective

2. if the cark does have symmetry, then 1 is never injective.



Carks and the Picard Group

The case g =3

When g = 3, the Picard group of K = Q(\ﬂ) becomes a bunch of circles.
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The case Q(/51) where W = (L3S)'(Ly )



Thank you!



