Hecke continued fractions and orders in relative quadratic extensions

Ayberk Zeytin, Université Galatasaray Journées Arithmétiques 2023

- 1. (Hecke) continued fractions
- 2. Picard group of a number field
- 3. Çarks and the Picard Group

Outline

(Hecke) continued fractions **Some notation**

The following elements generate PSL(2, $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } L_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

and induce the isomorphism : $PSL(2, \mathbb{Z})$

The element

 $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is not an element of PSL(2, \mathbb{Z}), but satisfies : $U(L_3S)U = L_3^2S$.

$$(\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}) \text{ so that } L_3 S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$\cong (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/3\mathbb{Z})$$

(Hecke) continued fractions **The Möbius action**

The group $PSL(2, \mathbf{R})$ acts on the upper half plane : $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$

This action can be extended to the boundary $\mathbf{R} \cup \{\infty\}$. We have :

$$U \cdot z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot z = \frac{1}{z},$$

$$\cdot z \mapsto \frac{pz + q}{rz + s}$$

$$(LS)^{n} \cdot z = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \cdot z = z + n$$

(Hecke) continued fractions

Continued fractions as words in U, L and S

A standard continued fraction can be interpreted as :

 $[a_0; a_1, a_2, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1}}}; \text{ with } a_0 \in \mathbb{Z}, a_1, a_2, \dots \in \mathbb{Z}_+$ $= (LS)^{a_0} \left[\frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1}}} \right]$ $= (L_3 S)^{a_0} U \left(a_1 + \frac{1}{a_2 + \frac{1}{a_2}} \right)$ •. / $= (L_3 S)^{a_0} U (L_3 S)^{a_1} U (L_3 S)^{a_2} U \dots$

(Hecke) continued fractions

Continued fractions as words in L and ${\cal S}$

The identity $U(L_3S)U = L_3^2S$ further give $[a_0; a_1, a_2, \dots] = \left((L_3S)^2 + (L_3$

Conclusion: to every continued fraction

es :
$$U(L_3S)^n U = (L_3^2S)^n$$
. So :
 $\int_{a_0}^{a_0} (U(L_3S)^{a_1}U) (L_3S)^{a_2}U...$
 $\int_{a_0}^{a_0} (L_3^2S)^{a_1} ((L_3S)^{a_2}(L_3^2S)^{a_3})...$
corresponds a word in S, L_3 (and L_3^2).

(Hecke) continued fractions **Continued fractions as elements of a completion**

 $(LS)^{n_0}\cdots(LS)^{n_{k+1}}(L^2S)^{\infty}$ and $(LS)^{n_0}\cdots(LS)^{n_k}(L^2S)(LS)^{\infty}$, $(LS)^{n_0} \cdots (L^2S)^{n_{k+1}} (LS)^{\infty}$ and $(LS)^{n_0} \cdots (L^2S)^{n_k} (LS) (L^2S)^{\infty}$,

- Each infinite continued fraction is identified with the corresponding infinite word in S, L and L^2 (or corresponding infinite path on bipartite Farey tree starting at I).
 - Each finite continued fraction is identified with the following infinite word on bipartite Farey tree starting at I:
 - (*k* even) (k odd)

(Hecke) continued fractions Generalization

For any integer $q \ge 3$, the Hecke group H_q is generated by : $S = \begin{pmatrix} 0-1 \\ 1 & 0 \end{pmatrix}$ and $\tau_q = \begin{pmatrix} \lambda_q - 1 \\ 1 & 0 \end{pmatrix}$; where $\lambda_q = \cos(\pi/q) \in \mathbf{R}$. For q = 3 we recover $PSL(2,\mathbb{Z}).$

The above choice induces the isomorphism $H_q \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}$.

The corresponding continued fractions algorithm can be described explicitly as :

- determined by the vertices of P_q .
- We get $x = L_{a}^{q-i+1}S(0)$.
- $x = SL_q^{i-1}(x), P_q = (L_q^{q-i+1}S)(P_q)$ and update ver and int.
- 4. [Finished?] if x = 0, return word, else go to the Euclidean step.

0. [input] a real number x, an integer q > 2. Set word to be the empty word, 1. [preliminary computations] Set $ver = (ver_1, \ldots, ver_{q-1})$ to be the set of finite vertices of P_q and $int = (int_1, \ldots, int_q)$ to be the list of intervals 2. [check] if $x = ver_i$, then set word $= L_q^{q-i}S$ and terminate the algorithm.

3. [Euclidean step] if $x \in int_i$, then concatenate $L_q^{q-i+1}S$ to word, and set

(Hecke) continued fractions Example

[0,1,12,1,1,1,2,1,5,1,15,1,2]

Of course, the matrix obtained from this argument is different :

$$\begin{pmatrix} 6+3\sqrt{5} & 89+39\sqrt{5} \\ 7+3\sqrt{5} & 94+43\sqrt{5} \end{pmatrix}$$

The output the algorithm is then a sequence of words in $L_q, L_q^2, \ldots, L_q^{q-1}$ and S

$$2] = \frac{46333}{50000}$$

= $(L_5^3 S)(L_5 S)^2 (L_5^3 S)(L_5 S)^3 (L_5 S)^5$

(Hecke) continued fractions Generalization

and conversely, infinite words in this alphabet

As in the previous case, we may identify such continued fractions with infinite words in $L_q, L_q^2, \ldots, L_q^{q-1}$ and S (or infinite paths on the corresponding Farey tree, denoted \mathcal{F}_q).

determine a unique real number.

The case q = 6

Picard group of a number field **Some notation**

A number field *K* is a finite extension of \mathbf{Q} .

Let Id(K) denote the multiplicative group of fractional ideals of K.

classes.

componentwise addition and multiplication. As a vector space over **R**, $K_{\mathbf{R}}$ is isomorphic to $\mathbf{R}^r \times \mathbf{C}^s$. The unit group of $K_{\mathbf{R}}$ is $K_{\mathbf{R}}^{\times} = \prod^{r} \mathbf{R}^{\times} \times \prod^{s} \mathbf{C}^{\times}$.

i=1

i=1

Given a number field K of degree n, there are n = r + 2s distinct embeddings of K into C. The first r of these are called real embeddings as their image lie in $\mathbf{R} \subset \mathbf{C}$, and the next 2s of these are called complex embeddings. An embedding σ of K is identified with its complex conjugate $\overline{\sigma}$ (an equivalence relation). There are r + s many such

We associate the étale algebra $K_{\mathbf{R}} := K \otimes_{\mathbf{O}} \mathbf{R}$ to the number field K. In $K_{\mathbf{R}}$ addition and multiplication are usual

Picard group of a number field The divisor class group

The norm map is defined as :

 $N: Id(K) \times K_{\mathbb{R}}^{\times} \to \mathbf{I}$

$$(I, (u_1, \dots, u_{r+s})) \mapsto [\mathbb{Z}_K : I] \cdot \prod_{i=1}^r u_i \cdot \prod_{i=r+1}^{r+s} |u_i|^2$$

The number field *K* can be embedded into $K_{\mathbf{R}}$ (by sending each $x \in K$ to $(\sigma_1(x), \dots, \sigma_{r+s}(x))$ and into Id(K) (by sending each $x \in K$ to the fractional ideal generated by x^{-1}):

The kernel of the norm map (denoted $Div^0(K)$) contracts (i.e., the second context of the more map (denoted $Div^0(K)$) contained to the more map (denoted $Div^0(K)$).

defined as the **Picard group** of *K*, $Pic^{0}(K)$.

$K \to Id(K) \times K_{\mathbf{R}}$

The kernel of the norm map (denoted $Div^{0}(K)$) contains the image of K and the cokernel of this map is

Picard group of a number field **Structure of the Picard group**

Theorem(Schoof, 2008) :

where T^0 is a torus of dimension n - 1 and $Cl^+(K)$ is the narrow class group of K. In fact, T^0 is isomorphic to $H/\mathbb{Z}_{K,+}^{\times}$, where H is a hyperplane in $K_{\mathbb{R}}$.

 $Pic^{0}(K) \cong T^{0} \times Cl^{+}(K)$

Carks and the Picard Group Periodic words, çarks

The periodic words correspond to subgroups generated by one element, say W(assumed to be primitive).

Carks and the Picard Group Faces of çarks

path on $\mathcal{F}_q/\langle W \rangle$.

has more than one root, otherwise it has a unique root.

A face of a çark determined by $\mathcal{F}_q/\langle W \rangle$ is defined as a bi-infinite left (or right) turn

 $W = S \left[(L_3^2 S)^2 (L_3 S)^2 (L_3^2 S) (L_3 S)^3 L_3^2 \right] S$

A face of a çark $\mathcal{F}_q/\langle W \rangle$ is determined by its **root**. Notice : if the face is spinal, then it

Çarks and the Picard Group The case q = 3

Theorem (Çaktı, Z.)

- Let q = 3. Given a çark (i.e. a primitive periodic word in L_3 , L_3^2 and S), there is a real quadratic number field $K = \mathbf{Q}(\sqrt{\Delta})$ and a map, denoted ι , from the set of edges of the çark to the Picard group of K so that
- 1. if the çark does not have any symmetry, then i is injective
- 2. if the çark does have symmetry, then *i* is never injective.

Carks and the Picard Group The case q = 3

Theorem (Z.)

Let q > 3 be a prime number. Given a çark (i.e. a primitive periodic word in the cark to the Picard group of *K* so that

- if the cark does not have any symmetry, then *i* is injective 1.
- if the cark does have symmetry, then *i* is never injective. 2.

 $L_q, \ldots L_q^{q-1}$ and S), there is a relative quadratic extension of the real cyclotomic number field $K = \mathbf{Q}(\zeta_a + \overline{\zeta_a}, \sqrt{\Delta})$ and a map, denoted ι , from the set of edges of

Çarks and the Picard Group The case q = 3

When q = 3, the Picard group of $K = \mathbf{Q}(\sqrt{\Delta})$ becomes a bunch of circles.

Thank you!