Hecke continued fractions and orders in relative quadratic extensions

Outline

1. (Hecke) continued fractions
2. Picard group of a number field
3. Çarks and the Picard Group

(Hecke) continued fractions

Some notation

The following elements generate $\operatorname{PSL}(2, \mathbb{Z})$:

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { and } L_{3}=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \text { so that } L_{3} S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and induce the isomorphism : $\operatorname{PSL}(2, \mathbf{Z}) \cong(\mathbf{Z} / 2 \mathbf{Z}) *(\mathbf{Z} / 3 \mathbf{Z})$
The element

$$
U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is not an element of $\operatorname{PSL}(2, \mathbb{Z})$, but satisfies : $U\left(L_{3} S\right) U=L_{3}^{2} S$.

(Hecke) continued fractions

The Möbius action

The group $\operatorname{PSL}(2, \mathbf{R})$ acts on the upper half plane :

$$
\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right) \cdot z \mapsto \frac{p z+q}{r z+s}
$$

This action can be extended to the boundary $\mathbf{R} \cup\{\infty\}$.
We have :

$$
U \cdot z=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot z=\frac{1}{z}, \quad(L S)^{n} \cdot z=\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) \cdot z=z+n
$$

(Hecke) continued fractions

Continued fractions as words in U, L and S

A standard continued fraction can be interpreted as :

$$
\begin{aligned}
{\left[a_{0} ; a_{1}, a_{2}, \ldots\right] } & =a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}} ; \text { with } a_{0} \in \mathbf{Z}, a_{1}, a_{2}, \ldots \in \mathbf{Z}_{+} \\
& =(L S)^{a_{0}}\left(\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}\right) \\
& =\left(L_{3} S\right)^{a_{0}} U\left(a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}\right) \\
& =\left(L_{3} S\right)^{a_{0}} U\left(L_{3} S\right)^{a_{1}} U\left(L_{3} S\right)^{a_{2}} U \ldots
\end{aligned}
$$

(Hecke) continued fractions

Continued fractions as words in L and S

The identity $U\left(L_{3} S\right) U=L_{3}^{2} S$ further gives : $U\left(L_{3} S\right)^{n} U=\left(L_{3}^{2} S\right)^{n}$. So :

$$
\begin{aligned}
{\left[a_{0} ; a_{1}, a_{2}, \ldots\right] } & =\left(\left(L_{3} S\right)^{a_{0}}\left(U\left(L_{3} S\right)^{a_{1}} U\right)\right)\left(L_{3} S\right)^{a_{2}} U \ldots \\
& =\left(\left(L_{3} S\right)^{a_{0}}\left(L_{3}^{2} S\right)^{a_{1}}\right)\left(\left(L_{3} S\right)^{a_{2}}\left(L_{3}^{2} S\right)^{a_{3}}\right) \ldots
\end{aligned}
$$

Conclusion: to every continued fraction corresponds a word in S, L_{3} (and L_{3}^{2}).

(Hecke) continued fractions

Continued fractions as elements of a completion

Each infinite continued fraction is identified with the corresponding infinite word in S, L and L^{2} (or corresponding infinite path on bipartite Farey tree starting at I).

Each finite continued fraction is identified with the following infinite word on bipartite Farey tree starting at I :

$$
\begin{array}{ll}
(L S)^{n_{0} \ldots}(L S)^{n_{k+1}}\left(L^{2} S\right)^{\infty} \text { and }(L S)^{n_{0}} \ldots(L S)^{n_{k}}\left(L^{2} S\right)(L S)^{\infty}, & (k \text { even }) \\
(L S)^{n_{0}} \ldots\left(L^{2} S\right)^{n_{k+1}}(L S)^{\infty} \text { and }(L S)^{n_{0} \ldots}\left(L^{2} S\right)^{n_{k}}(L S)\left(L^{2} S\right)^{\infty}, & (k \text { odd })
\end{array}
$$

(Hecke) continued fractions

Generalization

For any integer $q \geq 3$, the Hecke group H_{q} is generated by :
$S=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ and $\tau_{q}=\left(\begin{array}{cr}\lambda_{q}-1 \\ 1 & 0\end{array}\right)$; where $\lambda_{q}=\cos (\pi / q) \in \mathbf{R}$. For $q=3$ we recover $\operatorname{PSL}(2, \mathbf{Z})$.

The above choice induces the isomorphism $H_{q} \cong \mathbf{Z} / 2 \mathbf{Z} * \mathbf{Z} / q \mathbf{Z}$.
The corresponding continued fractions algorithm can be described explicitly as :
0 . [input] a real number x, an integer $q>2$. Set word to be the empty word,

1. [preliminary computations] Set ver $=\left(\operatorname{ver}_{1}, \ldots, \operatorname{ver}_{q-1}\right)$ to be the set of finite vertices of P_{q} and int $=\left(\right.$ int $_{1}, \ldots$, int $\left._{q}\right)$ to be the list of intervals determined by the vertices of P_{q}.
2. [check] if $x=\operatorname{ver}_{i}$, then set word $=L_{q}^{q-i} S$ and terminate the algorithm. We get $x=L_{q}^{q-i+1} S(0)$.
3. [Euclidean step] if $x \in$ int $_{i}$, then concatenate $L_{q}^{q-i+1} S$ to word, and set $x=S L_{q}^{i-1}(x), P_{q}=\left(L_{q}^{q-i+1} S\right)\left(P_{q}\right)$ and update ver and int.
4. [Finished?] if $x=0$, return word, else go to the Euclidean step.

(Hecke) continued fractions

Example

The output the algorithm is then a sequence of words in $L_{q}, L_{q}^{2}, \ldots, L_{q}^{q-1}$ and S

$$
\begin{aligned}
{[0,1,12,1,1,1,2,1,5,1,15,1,2] } & =\frac{46333}{50000} \\
& =\left(L_{5}^{3} S\right)\left(L_{5} S\right)^{2}\left(L_{5}^{3} S\right)\left(L_{5} S\right)^{3}\left(L_{5} S\right)^{5}
\end{aligned}
$$

Of course, the matrix obtained from this argument is different :

$$
\left(\begin{array}{ll}
6+3 \sqrt{5} & 89+39 \sqrt{5} \\
7+3 \sqrt{5} & 94+43 \sqrt{5}
\end{array}\right)
$$

(Hecke) continued fractions

Generalization

As in the previous case, we may identify such continued fractions with infinite words in $L_{q}, L_{q}^{2}, \ldots, L_{q}^{q-1}$ and S (or infinite paths on the corresponding Farey tree, denoted \mathscr{F}_{q}). and conversely, infinite words in this alphabet

determine a unique real number.

Picard group of a number field Some notation

A number field K is a finite extension of \mathbf{Q}.
Let $\operatorname{Id}(K)$ denote the multiplicative group of fractional ideals of K.
Given a number field K of degree n, there are $n=r+2 s$ distinct embeddings of K into \mathbf{C}. The first r of these are called real embeddings as their image lie in $\mathbf{R} \subset \mathbf{C}$, and the next $2 s$ of these are called complex embeddings. An embedding σ of K is identified with its complex conjugate $\bar{\sigma}$ (an equivalence relation). There are $r+s$ many such classes.

We associate the étale algebra $K_{\mathbf{R}}:=K \otimes_{\mathbf{Q}} \mathbf{R}$ to the number field K. In $K_{\mathbf{R}}$ addition and multiplication are usual componentwise addition and multiplication. As a vector space over $\mathbf{R}, K_{\mathbf{R}}$ is isomorphic to $\mathbf{R}^{r} \times \mathbf{C}^{s}$.
The unit group of $K_{\mathbf{R}}$ is $K_{\mathbf{R}}^{\times}=\prod_{i=1}^{r} \mathbf{R}^{\times} \times \prod_{i=1}^{s} \mathbf{C}^{\times}$.

Picard group of a number field

The divisor class group

The norm map is defined as :

$$
\begin{aligned}
& N: I d(K) \times K_{\mathbb{R}}^{\times} \rightarrow \mathbf{R}^{\times} \\
& \left(I,\left(u_{1}, \ldots, u_{r+s}\right)\right) \mapsto\left[\mathbf{Z}_{K}: I\right] \cdot \prod_{i=1}^{r} u_{i} \cdot \prod_{i=r+1}^{r+s}\left|u_{i}\right|^{2}
\end{aligned}
$$

The number field K can be embedded into $K_{\mathbf{R}}$ (by sending each $x \in K$ to $\left(\sigma_{1}(x), \ldots, \sigma_{r+s}(x)\right)$ and into $I d(K)$ (by sending each $x \in K$ to the fractional ideal generated by x^{-1}):

$$
K \rightarrow I d(K) \times K_{\mathbf{R}}
$$

The kernel of the norm map (denoted $\operatorname{Div}^{0}(K)$) contains the image of K and the cokernel of this map is defined as the Picard group of $K, \operatorname{Pic}^{0}(K)$.

Picard group of a number field

Structure of the Picard group

Theorem(Schoof, 2008) :

$$
\operatorname{Pic}^{0}(K) \cong T^{0} \times C l^{+}(K)
$$

where T^{0} is a torus of dimension $n-1$ and $C l^{+}(K)$ is the narrow class group of K. In fact, T^{0} is isomorphic to $H / \mathbf{Z}_{K,+}^{\times}$, where H is a hyperplane in $K_{\mathbf{R}}$.

Çarks and the Picard Group

Periodic words, çarks

The periodic words correspond to subgroups generated by one element, say W (assumed to be primitive).

The quotient $\mathscr{F}_{q} /\langle W\rangle$ is called a çark. Its spine determines the çark.

$W=S\left[\left(L_{3}^{2} S\right)^{2}\left(L_{3} S\right)^{2}\left(L_{3}^{2} S\right)\left(L_{3} S\right)^{3} L_{3}^{2}\right] S \quad$ (here $\left.q=3\right)$

Çarks and the Picard Group

Faces of çarks

A face of a çark determined by $\mathscr{F}_{q} /\langle W\rangle$ is defined as a bi-infinite left (or right) turn path on $\mathscr{F}_{q} /\langle W\rangle$.

A face of a çark $\mathscr{F}_{q} /\langle W\rangle$ is determined by its root. Notice : if the face is spinal, then it has more than one root, otherwise it has a unique root.

Çarks and the Picard Group

The case $q=3$

Theorem (Çaktı, Z.)
Let $q=3$. Given a çark (i.e. a primitive periodic word in L_{3}, L_{3}^{2} and S), there is a real quadratic number field $K=\mathbf{Q}(\sqrt{\Delta})$ and a map, denoted l, from the set of edges of the çark to the Picard group of K so that

1. if the çark does not have any symmetry, then t is injective
2. if the çark does have symmetry, then l is never injective.

Çarks and the Picard Group

The case $q=3$

Theorem (Z.)
Let $q>3$ be a prime number. Given a çark (i.e. a primitive periodic word in $L_{q}, \ldots L_{q}^{q-1}$ and S), there is a relative quadratic extension of the real cyclotomic number field $K=\mathbf{Q}\left(\zeta_{q}+\overline{\zeta_{q}}, \sqrt{\Delta}\right)$ and a map, denoted ι, from the set of edges of the çark to the Picard group of K so that

1. if the çark does not have any symmetry, then l is injective
2. if the çark does have symmetry, then l is never injective.

Çarks and the Picard Group

The case $q=3$

When $q=3$, the Picard group of $K=\mathbf{Q}(\sqrt{\Delta})$ becomes a bunch of circles.

The case $\mathbf{Q}(\sqrt{51})$ where $W=\left(L_{3}^{2} S\right)^{10}\left(L_{3} S\right)^{10}$

Thank you!

