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(Hecke) continued fractions

The following elements generate  :





and induce the isomorphism : 

PSL(2,ℤ)

S = (0 −1
1 0 )  and L3 = (1 −1

1 0 )  so that L3S = (1 1
0 1)

PSL(2,Z) ≅ (Z/2Z) * (Z/3Z)

The element





is not an element of , but satisfies : .

U = (0 1
1 0)

PSL(2,ℤ) U(L3S)U = L2
3S

Some notation



The group  acts on the upper half plane :





This action can be extended to the boundary .


We have :


PSL(2,R)

(p q
r s) ⋅ z ↦

pz + q
rz + s

R ∪ {∞}

U ⋅ z = (0 1
1 0) ⋅ z =

1
z

, (LS)n ⋅ z = (1 n
0 1) ⋅ z = z + n

The Möbius action
(Hecke) continued fractions



Continued fractions as words in U, L and S

A standard continued fraction can be interpreted as :


[a0; a1, a2, …] = a0 +
1

a1 + 1
a2 + 1

⋱

;  with a0 ∈ Z, a1, a2, … ∈ Z+

= (LS)a0
1

a1 + 1
a2 + 1

⋱

= (L3S)a0U a1 +
1

a2 + 1
⋱

= (L3S)a0U(L3S)a1U(L3S)a2U…

(Hecke) continued fractions



Continued fractions as words in L and S

The identity  further gives : . So :





Conclusion: to every continued fraction corresponds a word in . 

U(L3S)U = L2
3S U(L3S)nU = (L2

3S)n

[a0; a1, a2, …] = ((L3S)a0(U(L3S)a1U))(L3S)a2U…

= ((L3S)a0(L2
3S)a1) ((L3S)a2(L2

3S)a3)…

S, L3( and L2
3)

(Hecke) continued fractions



Continued fractions as elements of a completion

Each infinite continued fraction is identified with the corresponding infinite word in 
 (or corresponding infinite path on bipartite Farey tree starting at ).S, L and L2 I

Each finite continued fraction is identified with the following infinite word on 
bipartite Farey tree starting at  :I

(LS)n0⋯(LS)nk+1(L2S)∞ and (LS)n0⋯(LS)nk(L2S)(LS)∞, (k even)
(LS)n0⋯(L2S)nk+1(LS)∞ and (LS)n0⋯(L2S)nk(LS)(L2S)∞, (k odd)

(Hecke) continued fractions



Generalization

For any integer , the Hecke group  is generated by :  

For  we recover 

.


The above choice induces the isomorphism .


The corresponding continued fractions algorithm can be described explicitly as : 

q ≥ 3 Hq

S = (0−1
1 0)  and τq = (λq−1

1 0); where λq = cos(π/q) ∈ R . q = 3

PSL(2,Z)

Hq ≅ Z/2Z * Z/qZ

(Hecke) continued fractions



Example

[0,1,12,1,1,1,2,1,5,1,15,1,2] =
46333
50000

= (L3
5S)(L5S)2(L3

5S)(L5S)3(L5S)5

The output the algorithm is then a sequence of words in Lq, L2
q , …, Lq−1

q  and S

Of course, the matrix obtained from this argument is different : 

6 + 3 5 89 + 39 5

7 + 3 5 94 + 43 5

(Hecke) continued fractions



Generalization

As in the previous case, we may identify such continued fractions with infinite words in 
 (or infinite paths on the corresponding Farey tree, denoted ).Lq, L2

q , …, Lq−1
q  and S ℱq

The case q = 6

(Hecke) continued fractions

IS

L6 L2
6

L3
6

L4
6L5

6

L6S L2
6S

L3
6S

L4
6SL5

6S

and conversely, infinite words in this alphabet determine a unique real number. 



Picard group of a number field

A number field K is a finite extension of . 


Let denote the multiplicative group of fractional ideals of K.


Given a number field K of degree n, there are  distinct embeddings of K into . The first r of these are 
called real embeddings as their image lie in , and the next  of these are called complex embeddings. An 
embedding  of K is identified with its complex conjugate  (an equivalence relation). There are  many such 
classes. 


We associate the étale algebra  to the number field K. In  addition and multiplication are  usual 
componentwise addition and multiplication. As a vector space over ,  is isomorphic to . 


The unit group of  is . 


Q

Id(K)

n = r + 2s C
R ⊂ C 2s

σ σ r + s

KR := K ⊗Q R KR
R KR Rr × Cs

KR K×
R =

r

∏
i=1

R× ×
s

∏
i=1

C×

Some notation



The norm map is defined as :





The number field K can be embedded into  (by sending each  to  and into 
 (by sending each  to the fractional ideal generated by ) :


 


The kernel of the norm map (denoted ) contains the image of K and the cokernel of this map is 
defined as the Picard group  of K, .


N : Id(K) × K×
ℝ → R×

(I, (u1, …, ur+s)) ↦ [ZK : I] ⋅
r

∏
i=1

ui ⋅
r+s

∏
i=r+1

|ui |
2

KR x ∈ K (σ1(x), …, σr+s(x))
Id(K) x ∈ K x−1

K → Id(K) × KR

Div0(K)
Pic0(K)

The divisor class group
Picard group of a number field



Theorem(Schoof, 2008) : 





where  is a torus of dimension  and  is the narrow class group of K. In 
fact,  is isomorphic to , where  is a hyperplane in .


Pic0(K) ≅ T0 × Cl+(K)

T0 n − 1 Cl+(K)
T0 H/Z×

K,+ H KR

Structure of the Picard group
Picard group of a number field



Periodic words, çarks

The periodic words correspond to subgroups generated by one element, say  
(assumed to be primitive). 


The quotient  is called a  çark. Its spine determines the çark.

W

ℱq/⟨W⟩

W = S [(L2
3S)2(L3S)2(L2

3S)(L3S)3L2
3] S (here q = 3)

I
I

W = S [(L4
6S)(L2

6S)(L3
6S)(L2

6S) (here q = 6)

Çarks and the Picard Group



A face of a çark determined by  is defined as a bi-infinite left (or right) turn 
path on . 

ℱq/⟨W⟩
ℱq/⟨W⟩

Faces of çarks

W = S [(L2
3S)2(L3S)2(L2

3S)(L3S)3L2
3] S

A face of a çark  is determined by its root. Notice : if the face is spinal, then it 
has more than one root, otherwise it has a unique root. 

ℱq/⟨W⟩

Çarks and the Picard Group



Çarks and the Picard Group

Theorem (Çaktı, Z.) 


Let . Given a çark (i.e. a primitive periodic word in ), there is a real 
quadratic number field  and a map, denoted , from the set of edges of 
the çark to the Picard group of  so that


1. if the çark does not have any symmetry, then  is injective


2. if the çark does have symmetry, then  is never injective.

q = 3 L3, L2
3  and S

K = Q( Δ) ι
K

ι

ι

The case q = 3



Çarks and the Picard Group

Theorem (Z.) 


Let  be a prime number. Given a çark (i.e. a primitive periodic word in 
), there is a relative quadratic extension of the real cyclotomic  

number field  and a map, denoted , from the set of edges of 
the çark to the Picard group of  so that


1. if the çark does not have any symmetry, then  is injective


2. if the çark does have symmetry, then  is never injective.

q > 3
Lq, …Lq−1

q  and S
K = Q(ζq + ζq, Δ) ι

K

ι

ι

The case q = 3



When , the Picard group of  becomes a bunch of circles. q = 3 K = Q( Δ)

The case q = 3

Çarks and the Picard Group

 The case Q( 51) where W = (L2
3S)10(L3S)10



Thank you!


