The friable mean value of Erdős-Hooley's function Journées arithmétiques Nancy

Julie Wetzer Université du Littoral Côte d'Opale

July 2023

Erdős-Hooley's function

Erdős-Hooley's function (Hooley, 1979)

Let $n \geqslant 1$,

$$\Delta(n,v) := \sum_{\substack{d \mid n \ \mathrm{e}^{v} < d \leqslant \mathrm{e}^{v+1}}} 1 \quad (v \in \mathbb{R}), \quad \Delta(n) := \sup_{v \in \mathbb{R}} \Delta(n,v).$$

Arithmetic function which measures the logarithmic concentration of the set of divisors of an integer.

Recall that we denote by τ the function "number of divisors". We have the following trivial lower and upper bound

$$\max\left(1; \left|\frac{\tau(n)}{\log n}\right|\right) \leqslant \Delta(n) \leqslant \tau(n) \quad (n>1).$$

We are interested in the mean value of such a function, i.e. the quantity

$$\frac{1}{x}\sum_{n\leq x}\Delta(n).$$

Its order of magnitude is not known exactly at this time.

Hall & Tenenbaum (1982)

$$\frac{1}{x} \sum_{n \le x} \Delta(n) \gg \log_2 x \qquad (x \ge 3).$$

Hooley (1979)

$$\frac{1}{x}\sum_{n\in\mathbb{N}}\Delta(n)\ll (\log x)^{4/\pi-1}\qquad (x\geqslant 3).$$

• Tenenbaum (1985): There exists $c_0 > 0$ such that

$$\frac{1}{x} \sum_{n \leq x} \Delta(n) \ll \exp(c_0 \sqrt{\log_2 x \log_3 x}) \qquad (x \geqslant 16).$$

• La Bretèche & Tenenbaum (2022): Given any $a > \sqrt{2} \log 2 \approx 0.98026$, we have

$$\frac{1}{x} \sum_{n \le x} \Delta(n) \ll \exp(a\sqrt{\log_2 x}) \qquad (x \geqslant 3).$$

• Koukoulopoulos & Tao (2023): We have

$$\frac{1}{x} \sum_{n \le x} \Delta(n) \ll (\log_2 x)^{11/4} \qquad (x \ge 3).$$

Friable integers

Definition

An integer n > 1 is said to be y-friable if its largest prime factor, denoted $P^+(n)$, does not exceed y.

$$n = \underbrace{p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k}}_{\text{prime factorization}}.$$

The integer n is y-friable $\iff p_j \leqslant y \quad \forall j \in \{1, \dots, k\}.$

We traditionally set

$$S(x,y):=\{n:n\leqslant x,P(n)\leqslant y\},$$

and also

$$\Psi(x,y):=|S(x,y)|.$$

Remark

When $y \geqslant x$, $\Psi(x, y) = \lfloor x \rfloor$.

Typical problem: study the average behaviour of an arithmetic function over S(x, y).

Question: What is the proportion of y-friable integers among the integers less than x?

Definition

The Dickman function ϱ is the unique function, continuous on $]0,\infty[$, differentiable on $]1,\infty[$ satisfying

$$\begin{cases} \varrho(u) = 1 & (0 \leqslant u \leqslant 1), \\ u\varrho'(u) + \varrho(u - 1) = 0 & (u > 1). \end{cases}$$

The function ϱ has over-exponential decay.

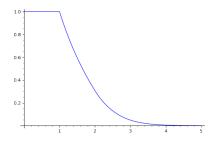


Figure: Graph of the function $\varrho(u)$

Dickman (1930)

For all fixed u > 0,

$$\lim_{x\to +\infty} \frac{\Psi(x,x^{1/u})}{x} = \varrho(u).$$

 $\varrho(u)$ is the probability that an integer $\leqslant x$ is $x^{1/u}$ -friable.

This still holds when $u = \frac{\log x}{\log y}$ tends to infinity and it is possible to get an asymptotic formula.

Let $\varepsilon > 0$, we define the following domain

$$H_{\varepsilon} := \left\{ (x,y) : \ x \geqslant 3, \ \exp\left((\log_2 x)^{5/3 + \varepsilon} \right) \leqslant y \leqslant x \right\}.$$

Notation
$$u := \frac{\log x}{\log y}$$
 $(x \geqslant y \geqslant 2)$.

Hildebrand (1986)

For all $\varepsilon > 0$ and uniformly for $(x, y) \in H_{\varepsilon}$, we have

$$\Psi(x,y) = x\varrho(u)\Big\{1 + O\Big(\frac{\log(u+1)}{\log y}\Big)\Big\}.$$

 H_{ε} is the largest domain in which the previous result is known to be true.

Let

$$\zeta(s,y) := \prod_{p \leqslant y} \left(1 - \frac{1}{p^s}\right)^{-1},$$

the Dirichlet series of the indicator function of *y*-integers. By Perron's formula we have for $x \notin \mathbb{N}$, $\alpha > 0$,

$$\Psi(x,y) = \frac{1}{2i\pi} \int_{\alpha-i\infty}^{\alpha+i\infty} \zeta(s,y) \frac{x^s}{s} \, \mathrm{d}s.$$

Let

$$\varphi_{y}(s) := -\frac{\zeta'(s,y)}{\zeta(s,y)} = \sum_{p \leqslant y} \frac{\log p}{p^{s} - 1} \quad (y \geqslant 2, \Re s > 0).$$

 $\alpha = \alpha(x, y)$ the unique real positive solution of $\varphi_y(\alpha) = \log x$ is the saddle-point which appears using the saddle-point method.

$$u := \frac{\log x}{\log y} \quad (x \geqslant y \geqslant 2); \quad \bar{u} := \min\left(\frac{y}{\log y}, u\right).$$

Hildebrand & Tenenbaum (1986)

Uniformly for $x \geqslant y \geqslant 2$, we have

$$\Psi(x,y) = \frac{x^{\alpha}\zeta(\alpha,y)}{\alpha\sqrt{2\pi|\varphi'_{y}(\alpha)|}} \left\{1 + O\left(\frac{1}{u}\right)\right\}.$$

The friable mean value of Erdős-Hooley's function

Define $\Psi(x, y; f) := \sum_{n \in S(x,y)} f(n)$.

Goal: estimate

$$\mathfrak{S}(x,y) := \frac{\Psi(x,y;\Delta)}{\Psi(x,y)} \qquad (x \geqslant y \geqslant 2).$$

Let $\varrho_2(u) = \int_0^u \varrho(v)\varrho(u-v)\,\mathrm{d}v = 2^{u+O(u/\log 2u)}\varrho(u)$. The trivial bounds $\max(1,\lfloor \tau(n)/\log n\rfloor) \leqslant \Delta(n) \leqslant \tau(n)$ and the estimate

$$\Psi(x, y; \tau) \sim x \varrho_2(u) \log y \quad (x \to \infty, (x, y) \in H_{\varepsilon})$$

due to Tenenbaum and Wu (2003) give

$$\frac{2^{u+O(u/\log 2u)}}{\sqrt{u}} \ll \mathfrak{S}(x,y) \ll 2^{u+O(u/\log 2u)}\log y \qquad \big((x,y)\in H_{\varepsilon}\big).$$

Result on H_{ε}

$$\frac{2^{u+O(u/\log 2u)}}{\sqrt{u}} \ll \mathfrak{S}(x,y) \ll 2^{u+O(u/\log 2u)}\log y \qquad \big((x,y) \in H_{\varepsilon}\big).$$

Theorem (Martin, Tenenbaum, W. (2023))

Let $\varepsilon > 0$. For $(x, y) \in H_{\varepsilon}$, we have

$$\log_2 y + 2^{u + O(u/\log 2u)} \ll \mathfrak{S}(x, y) \ll 2^{u + O(u/\log 2u)} e^{c\sqrt{\log_2 y \log_3 y}}.$$

Remark

For
$$\exp\left((\log_2 x)^{5/3+\varepsilon}\right) < y < x^{1/(2\log_3 x)}$$
, we have

$$\mathfrak{S}(x,y) = 2^{u+O(u/\log 2u)}.$$

A first lower bound in H_{ε}

Recall that

$$\mathfrak{S}(x,y)\gg rac{2^{u+O(u/\log 2u)}}{\sqrt{u}} \qquad \big((x,y)\in H_{\varepsilon}\big).$$

Proposition 1

Let $\varepsilon > 0$. Uniformly for $(x, y) \in H_{\varepsilon}$, we have

$$\mathfrak{S}(x,y)\gg 2^{u+O(u/\log 2u)}.$$

- Probabilistic argument: we introduce a random variable which takes the values $\log d$, when d goes through the set of divisors of n, with uniform probability $1/\tau(n)$. We denote by σ_n^2 its variance.
- By Bienaymé-Tchebychev's inequality, we get

$$rac{1}{ au(n)}\sum_{\substack{d\mid n\ |\log d-rac{1}{2}\log n|\geqslant 2\sigma_n}}1\leqslant rac{1}{4}.$$

• Then, we have for $n \geqslant 1$

$$\Delta(n) \geqslant \frac{3\tau(n)}{16\sigma_n + 4}$$

• Restriction to square-free integers. Uniformly for $x \ge y \ge 2$, we have

$$\sum_{n \in S(x,y)} \Delta(n) \gg \frac{1}{\sqrt{\log y \log(2x)}} \sum_{n \in S(x,y)} \tau(n) \mu(n)^{2}.$$

Lower bound on $\{x \geqslant y > x^{1/(2\log_3 x)}\}$

The above result is not good when u is too small.

Proposition 2

Uniformly for $(x, y) \in \{x \geqslant y > x^{1/(2\log_3 x)}\}$, we have

$$\mathfrak{S}(x,y) \gg \log_2 y + 2^{u+O(u/\log 2u)}.$$

Hall & Tenenbaum (1988)

$$\Delta(n) \geqslant \frac{1}{2\tau(n)} \sum_{\substack{dd' \mid n \ |\log(d/d')| \leqslant 1}} 1 \quad (n > 0).$$

This yields

$$\sum_{n \in S(x,y)} \Delta(n) \gg \sum_{\substack{d \leqslant \sqrt{x} \\ P(d) \leqslant y}} 2^{-\Omega(d)} \Psi\left(\frac{x}{d^2}, y\right) \left(S_{d,y}(2d) - S_{d,y}(d)\right),$$

where

$$S_{d,y}(D) := \sum_{\substack{(d,d')=1,P(d')\leqslant y \\ d'\leqslant D}} 2^{-\Omega(d')}.$$

Set

$$\mathcal{C}_{\kappa}(f) := \prod_{p} (1 - 1/p)^{\kappa} \sum_{\nu \geqslant 0} f(p^{\nu})/p^{\nu}.$$

We use a theorem of Tenenbaum and Wu. If f is a multiplicative function satisfying some hypothesies, we have the following asymptotic formula for $(x, y) \in H_{\varepsilon}$:

$$\Psi(x,y;f) := \sum_{n \in S(x,y)} f(n) = C_{\kappa}(f) x \varrho_{\kappa}(u) (\log y)^{\kappa-1} \{1+R\},$$

where R is an error term.

To handle the condition (d, d') = 1, we need a parametrized version of this theorem with some uniformity in f.

We have

$$S_{d,y}(2d) - S_{d,y}(d) = \sum_{\substack{(d,d')=1,P(d')\leqslant y\\d< d'\leqslant D}} 2^{-\Omega(d')}.$$

An effective lower bound for this furnishes

$$\mathfrak{S}(x,y) \gg \frac{1}{\varrho(u)\sqrt{\log y}} \sum_{\substack{d \leqslant \sqrt{x} \\ P(d) \leqslant y}} \frac{\varrho(u-2u_d)\varrho_{1/2}(u_d)}{d2^{\Omega(d)}} \left(\frac{\varphi(d)}{d}\right)^{1/2}.$$

Partial summation leads to the stated lower bound.

What about an upper bound in H_{ε} ?

Recall the trivial milestone

$$\mathfrak{S}(x,y) \ll 2^{u+O(u/\log 2u)}\log y \qquad ((x,y)\in H_{\varepsilon}).$$

Theorem (Martin, Tenenbaum, W. (2023))

Let $\varepsilon > 0$. For $(x, y) \in H_{\varepsilon}$, we have

$$\mathfrak{S}(x,y) \ll 2^{u+O(u/\log 2u)} e^{c\sqrt{\log_2 y \log_3 y}}.$$

We adapt the method developed by Tenenbaum in 1985 to the friable case. Let

$$\Delta(n, v) := |\{d : d \mid n, e^v < d \leqslant e^{v+1}\}| \qquad (n \geqslant 1, v \in \mathbb{R}).$$

Note that

$$\Delta(n) := \max_{v \in \mathbb{R}} \Delta(n, v).$$

Let

$$M_q(n) = \int_{\mathbb{R}} \Delta(n; v)^q du \qquad (q \geqslant 1).$$

- We have $\lim_{q\to\infty} M_q(n)^{1/q} = \Delta(n)$.
- We denote by n_k the product of the first k prime factors of n. Then, we evaluate

$$L(\sigma; k, q) := \sum_{n \ge 1} \mu(n)^2 \frac{M_q(n_k)^{1/q}}{n^{\sigma}} \qquad (\sigma > 1).$$

In the friable case we evaluate

$$L(\sigma; k, q, y) := \sum_{P(n) \leq y} \mu(n)^2 \frac{M_q(n_k)^{1/q}}{n^{\beta}},$$

where β is the saddle-point related to the friable mean-value of $\tau(n)$.



Result on $\{2 \leqslant y \leqslant \exp((\log_2 x)^2)\}$

Let

$$g(t) := \log \left\{ \frac{(1+2t)^{1+2t}}{(1+t)^{1+t}(4t)^t} \right\} \qquad (t>0).$$

Note that g is positive and strictly increasing on $(0, +\infty)$. The asymptotic behaviour of this function is given by

$$g(t) = egin{cases} \log 2 - rac{1}{4t} + O\Big(rac{1}{t^2}\Big) & ext{as } t o \infty, \ t \log \Big(rac{1}{t}\Big) - t(\log 4 - 1) + O(t^2) & ext{as } t o 0. \end{cases}$$

Theorem (Martin, Tenenbaum, W. (2023))

For $2 \leqslant y \leqslant \exp\left((\log_2 x)^2\right)$, with $\varepsilon_y := 1/\sqrt{\log y}$ and $\lambda = y/\log x$, we have

$$\mathfrak{S}(x,y) = \left(\frac{\Psi(x,y;\tau)}{\Psi(x,y)}\right)^{1+O(\varepsilon_y)} \simeq e^{ug(\lambda)\left(1+O(\varepsilon_y)\right)}.$$

Idea of the proof on $\{2 \leqslant y \leqslant e^{(\log_2 x)^2}\}$

Theorem (Martin, Tenenbaum, W. (2023))

For $2 \leqslant y \leqslant \exp\left((\log_2 x)^2\right)$, with $\varepsilon_y := 1/\sqrt{\log y}$ and $\lambda = y/\log x$, we have

$$\mathfrak{S}(x,y) = \left(\frac{\Psi(x,y;\tau)}{\Psi(x,y)}\right)^{1+O(\varepsilon_y)} \asymp e^{ug(\lambda)\left(1+O(\varepsilon_y)\right)}.$$

- Recall that $\max\left(1; \left|\frac{\tau(n)}{\log n}\right|\right) \leqslant \Delta(n) \leqslant \tau(n) \quad (n>1).$
- In this domain, the factor $1/\log n$ is negligible. We have

$$\mathfrak{S}(x,y) = \left(\frac{\Psi(x,y;\tau)}{\Psi(x,y)}\right)^{1+O(\varepsilon_y)} \qquad (2 \leqslant y \leqslant e^{(\log_2 x)^2}).$$

• From Drappeau (2016) and Tenenbaum (2022) we have

$$\frac{\Psi(x,y;\tau)}{\Psi(x,y)} \asymp \zeta(\alpha,y) e^{-\overline{u}(\log 4 - 1)\{1 + o(1)\}}.$$

A refinement gives the stated conclusion.