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Erdés-Hooley's function

Erdés-Hooley's function (Hooley, 1979)

Let n > 1,
A(n,v) = Z 1 (veR), A(n):=supA(n,v).
d|n v
ev<d<ev+1

Arithmetic function which measures the logarithmic concentration
of the set of divisors of an integer.

Recall that we denote by 7 the function "number of divisors". We
have the following trivial lower and upper bound

log n

max (1; [T(n)D < A(n) <7(n) (n>1). J
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We are interested in the mean value of such a function, i.e. the

quantity
1
— A(n).
> am)

n<x

Its order of magnitude is not known exactly at this time.

Hall & Tenenbaum (1982)

3/23



@ Tenenbaum (1985): There exists cg > 0 such that

- Z A(n) < exp(cgy/log, x logz x) (x > 16).

n<x

o La Bretéche & Tenenbaum (2022): Given any
a > /2log?2 ~ 0.98026, we have

fZA < exp(ay/log, x) (x =3).

n<x

e Koukoulopoulos & Tao (2023): We have

- Z A(n) < (logy x)1/* (x = 3).

n<x
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Friable integers

Definition

An integer n > 1 is said to be y-friable if its largest prime factor,
denoted P (n), does not exceed y.

a1 Q2 Q3

n=pitp3*ps - Py

prime factorization

The integer n is y-friable <= p; <y Vje{l,--- k}.
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We traditionally set
S(x,y):=={n:n<x, P(n) <y},

and also

When y > x, W(x,y) = | x].

Typical problem: study the average behaviour of an arithmetic
function over S(x, y).

Question: What is the proportion of y-friable integers among the
integers less than x 7
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Definition
The Dickman function o is the unique function, continuous
on |0, o], differentiable on |1, oo satisfying

{e(u)=1 (O<u<1)
ud(u)+o(u—1)=0 (u>1)

The function g has over-exponential decay.

1 2 3 4 5

Figure: Graph of the function o(u)
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Dickman (1930)

For all fixed u > 0,

W(x, x4

X——+00 X - Q(U).

o(u) is the probability that an integer < x is x!/U-friable.
b%s

I :
This still holds when u = Iog tends to infinity and it is possible to
ogy

get an asymptotic formula.
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Let € > 0, we define the following domain

il == {(x,y) D x =3, exp <(Iog2 x)5/3+5> <y < x}. J
I
Notation u i= 2> (x>y=>2).
log y

Hildebrand (1986)

For all € > 0 and uniformly for (x, y) € H;, we have

V(x,y) = xg(u){l + O<%> }

H. is the largest domain in which the previous result is known to be
true.
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Let

G =T10- %)

S
Py P
the Dirichlet series of the indicator function of y-integers. By

Perron’s formula we have for x ¢ IN, a > 0,

1 a+ico xS
w(X>Y):/ ((s,y)?ds.

2iT Jo—ioo
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Let

oy(s) = —C/(S’y) = Z log p (y =22, Rs > 0).

a = a(x, y) the unique real positive solution of ¢, () = log x is
the saddle-point which appears using the saddle-point method.

log x
u:=
log y

Hildebrand & Tenenbaum (1986)

Uniformly for x > y > 2, we have

V(x,y) = M{l + O(é)}

a,/2m|gy ()| !
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The friable mean value of Erdés-Hooley's function

Define W(x,y; f) := ZneS(X,y) f(n).
Goal : estimate

V(x,y)
Let oo(u) = / o(v)o(u — v)dv = 2u+0u/10820) (1)) The trivial
0
bounds max(1, |7(n)/logn|) < A(n) < 7(n) and the estimate

S(x,y) = sy 2 ) J

V(x,y;7) ~ xp2(u)logy (x — o0, (x,y) € He)

due to Tenenbaum and Wu (2003) give

ou+0(u/ log 2u)

Vu

< G(X,y) < 2u+O(u/ log 2u) log y ((X,y) c Hg)_ |
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Result on H.

ou+0(u/ log 2u)

Vu

< B(x,y) < 2utOW/ e log y ((x,y) € H.).

Theorem (Martin, Tenenbaum, W. (2023))

Let e > 0. For (x,y) € He, we have

|og2y + 2u+O(u/ log 2u) < G(X,y) < 2u+O(u/ Iog2u)ec\/|og2ylog3y‘

For exp ((log x)5/3+€) <y < x1/(logsx) e have

G(X,y) _ 2u+O(u/ Iog2u)'
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A first lower bound in H.

Recall that
ou+0(u/log2u)

S(x,y) > Ta

((x,y) € HE).

Proposition 1

Let € > 0. Uniformly for (x,y) € H., we have

G(X,y) > 2u+O(u/ |og2u).
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Probabilistic argument: we introduce a random variable which
takes the values log d, when d goes through the set of divisors
of n, with uniform probability 1/7(n). We denote by o2 its
variance.

By Bienaymé-Tchebychev's inequality, we get

1
Ly s
7(n) T
| log d—% log n|>20,

E

Then, we have for n > 1

37(n)
A(n) > ————
(n) 160, + 4

Restriction to square-free integers. Uniformly for x > y > 2,
we have

Z Aln \/Io log(2x) Z
neS(x,y) gy g NES (x:y)
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Lower bound on {x >y > xl/(2'°g3x)}

The above result is not good when u is too small.

Proposition 2

Uniformly for (x,y) € {x >y > x/(2108s¥)} " we have

S(x,y) > log, y + 2u+0(u/leg2u)
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Hall & Tenenbaum (1988)

A(n) > L > 1 (n>0).

27(n) il
|log(d/d")| <1

This yields

Z A(n > Z 2- Q(d)lll< )(Sd7y(2d) - Sd,y(d)),

neS(x,y) P?;)\[
4

where

Say(D) = oo 2

(d,d")=1,P(d")<y
d'<D
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Set

Cu(f) = Hl—l/p > f(p

v>0

We use a theorem of Tenenbaum and Wu. If f is a multiplicative
function satisfying some hypothesies, we have the following
asymptotic formula for (x,y) € He:

W(x,yif) = > f(n) = Cuf)xex(u)(logy) {1+ R},
neS(x,y)

where R is an error term.
To handle the condition (d,d’) = 1, we need a parametrized
version of this theorem with some uniformity in f.
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We have

Sd,y(zd) - Sd,y(d) = E 279(‘1/)-
(d,d")=1,P(d")<y
d<d’'<D

An effective lower bound for this furnishes

1 o(u —2uqg)o1/2(uq) rp(d)\1/2
G] _ .
(x,y) > o(u)vlogy d;[ d29(d) ( d )
P(d)<y

Partial summation leads to the stated lower bound.
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What about an upper bound in H. 7

Recall the trivial milestone

S(x,y) < u+0(u/log2u) log y ((X,y) c HE).

Theorem (Martin, Tenenbaum, W. (2023))

Let e > 0. For (x,y) € H-, we have

& (x, y) < 2u+0(u/log2u)ger/logs ylogs y

We adapt the method developed by Tenenbaum in 1985 to the
friable case. Let

A(n,v):=|{d:d|n e <d<e" T} (n>1, veR).

Note that
A(n) ;== maxA(n,v).

veR
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Let

= / A(n; v)9du (g = 1).
R

i 1/a —
e We have qI|_>mOO Mg(n) A(n).

@ We denote by ny the product of the first k prime factors of n.

Then, we evaluate
M
L(o; k,q): Z,u )2 q(nk) (o0 >1).
n>1

In the friable case we evaluate

Loikquy) = 3 sl Malm

P(n)<y

where (3 is the saddle-point related to the friable mean-value

of 7(n).

21/23



Result on {2 < y < exp ((log, x)?) }

Let
(14 2t)t+2t }

0 tog { LF20T

g(t) :=log \ gy (an)e

Note that g is positive and strictly increasing on (0, 4+00). The
asymptotic behaviour of this function is given by

(t>0).

1 1
|og2—ﬂ+0<t7) as t—>OO,

1
tlog (?) —t(log4 — 1)+ O(t?) ast— 0.

Theorem (Martin, Tenenbaum, W. (2023))

For2 <y < exp ((Iog2 x)2), with e, :=1/+/logy and
A =y/log x, we have

VYOG Y TNITOE) ) (1400
S(x,y) = (W) = 8 (1+06),
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Idea of the proof on {2 < y < ellog2¥)%}

Theorem (Martin, Tenenbaum, W. (2023))

For2 <y < exp ((Iog2 x)2), with e, :=1/+/logy and
A =y/logx, we have

Yooy YO < g iroe),

V(x,y) -
@ Recall that max (1; LT(n)J) < A(n) < 7(n) (n>1).

ogn
@ In this domain, the factor 1/ log n is negligible. We have

V(x,y;7)\1+0(y)
St = (i)
e From Drappeau (2016) and Tenenbaum (2022) we have
V(x,yi7)
V(x,y)
A refinement gives the stated conclusion.

S(x,y) = (

(2 <y< o(log> X)z)‘

— C(a, y)efﬁ(log 471){1+o(1)}.
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