Global series for height 1 multiple zeta functions

Paul Thomas Young

College of Charleston

July 4, 2023

Euler's constant

The Euler constant $\gamma=0.5772156649 \cdots$, given by

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\log n\right)=\lim _{s \rightarrow 0}\left(\Gamma(s)-\frac{1}{s}\right)=-\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)
$$

is of unknown algebraic nature.

Euler's constant

The Euler constant $\gamma=0.5772156649 \cdots$, given by

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\log n\right)=\lim _{s \rightarrow 0}\left(\Gamma(s)-\frac{1}{s}\right)=-\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)
$$

is of unknown algebraic nature.

- It has classical series representations

$$
\gamma=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta(n)=\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n},
$$

the first of which is due to Euler in 1731.

Euler's constant

The Euler constant $\gamma=0.5772156649 \cdots$, given by

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\log n\right)=\lim _{s \rightarrow 0}\left(\Gamma(s)-\frac{1}{s}\right)=-\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)
$$

is of unknown algebraic nature.

- It has classical series representations

$$
\gamma=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta(n)=\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n},
$$

the first of which is due to Euler in 1731.

- The second series, due to Mascheroni in 1790, involves the Bernoulli numbers of the second kind b_{n}, defined by

$$
b_{n}=\int_{0}^{1}\binom{x}{n} d x \quad \text { or } \quad \frac{t}{\log (1+t)}=\sum_{n=0}^{\infty} b_{n} t^{n}
$$

Euler's constant

The Euler constant $\gamma=0.5772156649 \cdots$, given by

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\log n\right)=\lim _{s \rightarrow 0}\left(\Gamma(s)-\frac{1}{s}\right)=-\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)
$$

is of unknown algebraic nature.

- It has classical series representations

$$
\gamma=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta(n)=\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n},
$$

the first of which is due to Euler in 1731.

- The second series, due to Mascheroni in 1790, involves the Bernoulli numbers of the second kind b_{n}, defined by

$$
b_{n}=\int_{0}^{1}\binom{x}{n} d x \quad \text { or } \quad \frac{t}{\log (1+t)}=\sum_{n=0}^{\infty} b_{n} t^{n}
$$

- Natural generalizations of these classical series describe the singular behavior of height 1 multiple zeta functions and the Ramanujan summation of multiple harmonic star sums.

Multiple zeta functions

For positive integers s_{2}, \ldots, s_{j}, the multiple zeta function $\zeta\left(s, s_{2}, \ldots, s_{j}\right)$ may be considered as a single-variable function defined for $\Re(s)>1$ by

$$
\zeta\left(s, s_{2}, \ldots, s_{j}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n_{1}^{s} n_{2}^{s_{2}} \cdots n_{j}^{s_{j}}} .
$$

Multiple zeta functions

For positive integers s_{2}, \ldots, s_{j}, the multiple zeta function $\zeta\left(s, s_{2}, \ldots, s_{j}\right)$ may be considered as a single-variable function defined for $\Re(s)>1$ by

$$
\zeta\left(s, s_{2}, \ldots, s_{j}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n_{1}^{s_{1}^{s_{2}} n_{2} \cdots n_{j}^{s_{j}}} .}
$$

- When $s=s_{1}>1$ is an integer, the value $\zeta\left(s_{1}, s_{2}, \ldots, s_{j}\right)$ is known as a multiple zeta value of weight $s_{1}+\cdots+s_{j}$, of depth j, and of height $\#\left\{i: s_{i}>1\right\}$.

Multiple zeta functions

For positive integers s_{2}, \ldots, s_{j}, the multiple zeta function $\zeta\left(s, s_{2}, \ldots, s_{j}\right)$ may be considered as a single-variable function defined for $\Re(s)>1$ by

$$
\zeta\left(s, s_{2}, \ldots, s_{j}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n_{1}^{s} n_{2}^{s_{2}} \cdots n_{j}^{s_{j}}} .
$$

- When $s=s_{1}>1$ is an integer, the value $\zeta\left(s_{1}, s_{2}, \ldots, s_{j}\right)$ is known as a multiple zeta value of weight $s_{1}+\cdots+s_{j}$, of depth j, and of height $\#\left\{i: s_{i}>1\right\}$.
- The height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right):=\zeta(s, \underbrace{1, \ldots, 1}_{j-1})$ of depth j has a meromorphic
continuation to \mathbb{C} with poles among $s=1,0,-1,-2, \ldots$ We will determine the coefficients $\gamma_{i}^{[j]}(k)$ in the Laurent series

Multiple zeta functions

For positive integers s_{2}, \ldots, s_{j}, the multiple zeta function $\zeta\left(s, s_{2}, \ldots, s_{j}\right)$ may be considered as a single-variable function defined for $\Re(s)>1$ by

$$
\zeta\left(s, s_{2}, \ldots, s_{j}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n_{1}^{s} n_{2}^{s_{2}} \cdots n_{j}^{s_{j}}} .
$$

- When $s=s_{1}>1$ is an integer, the value $\zeta\left(s_{1}, s_{2}, \ldots, s_{j}\right)$ is known as a multiple zeta value of weight $s_{1}+\cdots+s_{j}$, of depth j, and of height $\#\left\{i: s_{i}>1\right\}$.
- The height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right):=\zeta(s, \underbrace{1, \ldots, 1}_{j-1})$ of depth j has a meromorphic
continuation to \mathbb{C} with poles among $s=1,0,-1,-2, \ldots$ We will determine the coefficients $\gamma_{i}^{[j]}(k)$ in the Laurent series

Multiple zeta functions

For positive integers s_{2}, \ldots, s_{j}, the multiple zeta function $\zeta\left(s, s_{2}, \ldots, s_{j}\right)$ may be considered as a single-variable function defined for $\Re(s)>1$ by

$$
\zeta\left(s, s_{2}, \ldots, s_{j}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n_{1}^{s} n_{2}^{s_{2}} \cdots n_{j}^{s_{j}}} .
$$

- When $s=s_{1}>1$ is an integer, the value $\zeta\left(s_{1}, s_{2}, \ldots, s_{j}\right)$ is known as a multiple zeta value of weight $s_{1}+\cdots+s_{j}$, of depth j, and of height $\#\left\{i: s_{i}>1\right\}$.
- The height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right):=\zeta(s, \underbrace{1, \ldots, 1}_{j-1})$ of depth j has a meromorphic continuation to \mathbb{C} with poles among $s=1,0,-1,-2, \ldots$ We will determine the coefficients $\gamma_{i}^{[j]}(k)$ in the Laurent series

$$
\zeta\left(s,\{1\}^{j-1}\right)=\sum_{i=-N}^{-1} \gamma_{i}^{[j]}(k)(s-k)^{i}+\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!} \gamma_{i}^{[j]}(k)(s-k)^{i}
$$

for all degrees $i \leq 1$ and all poles $k=1,0,-1,-2, \ldots$; we will refer to the coefficients $\gamma_{i}^{[j]}(k)$ for $i \geq 0$ as "height 1 Stieltjes constants". The poles at $s=0$ and at $s=1$ seem to be the most interesting.

Multiple zeta functions

For positive integers s_{2}, \ldots, s_{j}, the multiple zeta function $\zeta\left(s, s_{2}, \ldots, s_{j}\right)$ may be considered as a single-variable function defined for $\Re(s)>1$ by

$$
\zeta\left(s, s_{2}, \ldots, s_{j}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{j}>0} \frac{1}{n_{1}^{s} n_{2}^{s_{2}} \cdots n_{j}^{s_{j}}} .
$$

- When $s=s_{1}>1$ is an integer, the value $\zeta\left(s_{1}, s_{2}, \ldots, s_{j}\right)$ is known as a multiple zeta value of weight $s_{1}+\cdots+s_{j}$, of depth j, and of height $\#\left\{i: s_{i}>1\right\}$.
- The height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right):=\zeta(s, \underbrace{1, \ldots, 1}_{j-1})$ of depth j has a meromorphic
continuation to \mathbb{C} with poles among $s=1,0,-1,-2, \ldots$. We will determine the coefficients $\gamma_{i}^{[j]}(k)$ in the Laurent series

$$
\zeta(s)=\frac{1}{s-1}+\sum_{i=0}^{\infty} \frac{(-1)^{i} \gamma_{i}}{i!}(s-1)^{i}
$$

for all degrees $i \leq 1$ and all poles $k=1,0,-1,-2, \ldots$; we will refer to the coefficients $\gamma_{i}^{[j]}(k)$ for $i \geq 0$ as "height 1 Stieltjes constants". The poles at $s=0$ and at $s=1$ seem to be the most interesting.

- Thus the classical Stieltjes constants are denoted $\gamma_{i}:=\gamma_{i}^{[1]}(1)$.

Global series for height 1 multiple zeta functions

Theorem (2022)
For any positive integer j, the series representation

$$
\zeta\left(s+1,\{1\}^{j-1}\right)=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}}{n!(n+s)^{j+1}}
$$

is absolutely convergent for all $s \in \mathbb{C}$, except where s is zero or a negative integer, and provides a meromorphic continuation of $\zeta\left(s+1,\{1\}^{j-1}\right)$ to the entire complex plane. Alternately, for each nonnegative integer j we have

$$
\zeta\left(s,\{1\}^{j}\right)=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}(1)}{n!(n+s-1)^{j+1}}
$$

for all $s \in \mathbb{C} \backslash\{1,0,-1, \ldots\}$.

Global series for height 1 multiple zeta functions

Theorem (2022)
For any positive integer j, the series representation

$$
\zeta\left(s+1,\{1\}^{j-1}\right)=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}}{n!(n+s)^{j+1}}
$$

is absolutely convergent for all $s \in \mathbb{C}$, except where s is zero or a negative integer, and provides a meromorphic continuation of $\zeta\left(s+1,\{1\}^{j-1}\right)$ to the entire complex plane. Alternately, for each nonnegative integer j we have

$$
\zeta\left(s,\{1\}^{j}\right)=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}(1)}{n!(n+s-1)^{j+1}}
$$

for all $s \in \mathbb{C} \backslash\{1,0,-1, \ldots\}$.

- The coefficients of these global series are complex-order Bernoulli polynomials, defined by

$$
\left(\frac{t}{e^{t}-1}\right)^{z} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(z)}(x) \frac{t^{n}}{n!}
$$

Sketch of proof

For $\Re(a)>0$ the multiple Hurwitz zeta function $\zeta_{r}(s, a)$ of order r may be defined by the expressions

$$
\zeta_{r}(s, a)=\sum_{m=0}^{\infty}\binom{m+r-1}{m}(m+a)^{-s}=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}(a)}{n!(n+s-r)},
$$

where the first converges for $\Re(s)>r$, while the second is convergent for all $s \in \mathbb{C}$.

Sketch of proof

For $\Re(a)>0$ the multiple Hurwitz zeta function $\zeta_{r}(s, a)$ of order r may be defined by the expressions

$$
\zeta_{r}(s, a)=\sum_{m=0}^{\infty}\binom{m+r-1}{m}(m+a)^{-s}=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}(a)}{n!(n+s-r)}
$$

where the first converges for $\Re(s)>r$, while the second is convergent for all $s \in \mathbb{C}$.

- Using these expressions, we evaluate

$$
\left.D_{r}^{j} \zeta_{r}(s, a)\right|_{r=0, a \rightarrow 0}=j!\zeta\left(s+1,\{1\}^{j-1}\right)=\frac{j!}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}}{n!(n+s)^{j+1}},
$$

and a similar evaluation at $(r, a)=(1,1)$.

Sketch of proof

For $\Re(a)>0$ the multiple Hurwitz zeta function $\zeta_{r}(s, a)$ of order r may be defined by the expressions

$$
\zeta_{r}(s, a)=\sum_{m=0}^{\infty}\binom{m+r-1}{m}(m+a)^{-s}=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}(a)}{n!(n+s-r)}
$$

where the first converges for $\Re(s)>r$, while the second is convergent for all $s \in \mathbb{C}$.

- Using these expressions, we evaluate

$$
\left.D_{r}^{j} \zeta_{r}(s, a)\right|_{r=0, a \rightarrow 0}=j!\zeta\left(s+1,\{1\}^{j-1}\right)=\frac{j!}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}}{n!(n+s)^{j+1}},
$$

and a similar evaluation at $(r, a)=(1,1)$.

- Taking s to be a positive integer gives the duality relation

$$
\zeta\left(k+1,\{1\}^{j-1}\right)=\zeta\left(j+1,\{1\}^{k-1}\right)
$$

Sketch of proof

For $\Re(a)>0$ the multiple Hurwitz zeta function $\zeta_{r}(s, a)$ of order r may be defined by the expressions

$$
\zeta_{r}(s, a)=\sum_{m=0}^{\infty}\binom{m+r-1}{m}(m+a)^{-s}=\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}(a)}{n!(n+s-r)}
$$

where the first converges for $\Re(s)>r$, while the second is convergent for all $s \in \mathbb{C}$.

- Using these expressions, we evaluate

$$
\left.D_{r}^{j} \zeta_{r}(s, a)\right|_{r=0, a \rightarrow 0}=j!\zeta\left(s+1,\{1\}^{j-1}\right)=\frac{j!}{\Gamma(s)} \sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n}^{(n+s)}}{n!(n+s)^{j+1}},
$$

and a similar evaluation at $(r, a)=(1,1)$.

- Taking s to be a positive integer gives the duality relation

$$
\zeta\left(k+1,\{1\}^{j-1}\right)=\zeta\left(j+1,\{1\}^{k-1}\right) .
$$

- This also exhibits the multiple Hurwitz zeta function $\zeta_{r}(s, 1)$ as the ordinary generating function of the sequence $\left\{\zeta\left(s,\{1\}^{j}\right)\right\}_{j=0}^{\infty}$ of height 1 zeta functions.

Height 1 zeta functions at $s=1$

Corollary (2022)
For any positive integer j, the height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right)$ of depth j has a pole of order j at $s=1$. The singular part (degree $i \leq 0$) of its Laurent series is described by

$$
s^{j} \zeta\left(s+1,\{1\}^{j-1}\right) \equiv \Gamma(s+1)^{-1} \quad\left(\bmod s^{j+1} \mathbb{C}[[s]]\right),
$$

and the linear coefficient is given by the series

$$
-\gamma_{1}^{[j]}(1)=\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(j+1)}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right)
$$

where $H_{n}^{(m)}:=\sum_{k=1}^{n} 1 / k^{m}$ is the generalized harmonic number.

Height 1 zeta functions at $s=1$

Corollary (2022)
For any positive integer j, the height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right)$ of depth j has a pole of order j at $s=1$. The singular part (degree $i \leq 0$) of its Laurent series is described by

$$
s^{j} \zeta\left(s+1,\{1\}^{j-1}\right) \equiv \Gamma(s+1)^{-1} \quad\left(\bmod s^{j+1} \mathbb{C}[[s]]\right),
$$

and the linear coefficient is given by the series

$$
-\gamma_{1}^{[j]}(1)=\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(j+1)}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right),
$$

where $H_{n}^{(m)}:=\sum_{k=1}^{n} 1 / k^{m}$ is the generalized harmonic number.

Height 1 zeta functions at $s=1$

Corollary (2022)
For any positive integer j, the height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right)$ of depth j has a pole of order j at $s=1$. The singular part (degree $i \leq 0$) of its Laurent series is described by

$$
s^{j} \zeta\left(s+1,\{1\}^{j-1}\right) \equiv \Gamma(s+1)^{-1} \quad\left(\bmod s^{j+1} \mathbb{C}[[s]]\right),
$$

and the linear coefficient is given by the series

$$
-\gamma_{1}^{[j]}(1)=\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(j+1)}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right),
$$

where $H_{n}^{(m)}:=\sum_{k=1}^{n} 1 / k^{m}$ is the generalized harmonic number.
Sketch of proof. Start with the global series for $\zeta\left(s+1,\{1\}^{j-1}\right)$, multiply both sides by $\Gamma(s)$, subtract the (singular) $n=0$ term. Then the limit as $s \rightarrow 0$ is

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n} B_{n}^{(n)}}{n!n^{j+1}} & =\sum_{n=1}^{\infty} \sum_{k=0}^{n}(-1)^{k} b_{k} \frac{1}{n^{j+1}}=\sum_{k=0}^{\infty}(-1)^{k} b_{k} \sum_{n=\max (k, 1)}^{\infty} \frac{1}{n^{j+1}} \\
& =\sum_{k=0}^{\infty}(-1)^{k} b_{k}\left(\zeta(j+1)-H_{k-1}^{(j+1)}\right)=\sum_{k=1}^{\infty}\left|b_{k}\right| H_{k-1}^{(j+1)} .
\end{aligned}
$$

Stieltjes constants at $s=1$

For $j=1,2$ we have the slowly convergent series

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(2)}=-\gamma_{1}-\frac{\gamma^{2}}{2}+\frac{\pi^{2}}{12} \quad\left(\gamma_{1}=\gamma_{1}^{[1]}(1)\right) \\
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(3)}=-\gamma_{1}^{[2]}(1)-\frac{\gamma^{3}}{6}+\frac{\gamma \pi^{2}}{12}-\frac{\zeta(3)}{3}
\end{gathered}
$$

Stieltjes constants at $s=1$

For $j=1,2$ we have the slowly convergent series

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(2)}=-\gamma_{1}-\frac{\gamma^{2}}{2}+\frac{\pi^{2}}{12} \quad\left(\gamma_{1}=\gamma_{1}^{[1]}(1)\right) \\
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(3)}=-\gamma_{1}^{[2]}(1)-\frac{\gamma^{3}}{6}+\frac{\gamma \pi^{2}}{12}-\frac{\zeta(3)}{3}
\end{gathered}
$$

- Coppo and Candelpergher recently gave an evaluation equivalent to

$$
\gamma_{1}^{[2]}(1)=\frac{1}{2} K_{2}-\frac{\gamma_{2}}{2}+\frac{\gamma \pi^{2}}{12}-\frac{\gamma^{3}}{2}-\gamma \gamma_{1},
$$

where K_{n} is defined by

$$
K_{n}=\frac{i \pi}{2} \int_{-1}^{1} x \log ^{n}\left(\log \left(1+e^{i \pi x}\right)\right) d x
$$

Thus $\gamma_{1}^{[2]}(1)$ is a polynomial in $\zeta(2), \gamma, \gamma_{1}, \gamma_{2}, K_{2}$, but no expression of K_{2} in terms of other known constants appears to be known.

Stieltjes constants at $s=1$

For $j=1,2$ we have the slowly convergent series

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(2)}=-\gamma_{1}-\frac{\gamma^{2}}{2}+\frac{\pi^{2}}{12} \quad\left(\gamma_{1}=\gamma_{1}^{[1]}(1)\right) \\
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n-1}^{(3)}=-\gamma_{1}^{[2]}(1)-\frac{\gamma^{3}}{6}+\frac{\gamma \pi^{2}}{12}-\frac{\zeta(3)}{3}
\end{gathered}
$$

- Coppo and Candelpergher recently gave an evaluation equivalent to

$$
\gamma_{1}^{[2]}(1)=\frac{1}{2} K_{2}-\frac{\gamma_{2}}{2}+\frac{\gamma \pi^{2}}{12}-\frac{\gamma^{3}}{2}-\gamma \gamma_{1},
$$

where K_{n} is defined by

$$
K_{n}=\frac{i \pi}{2} \int_{-1}^{1} x \log ^{n}\left(\log \left(1+e^{i \pi x}\right)\right) d x .
$$

Thus $\gamma_{1}^{[2]}(1)$ is a polynomial in $\zeta(2), \gamma, \gamma_{1}, \gamma_{2}, K_{2}$, but no expression of K_{2} in terms of other known constants appears to be known.

- We also note that $\gamma_{1}^{[j]}(1)<0$ for all j, with

$$
\lim _{j \rightarrow \infty} \gamma_{1}^{[j]}(1)=-\left|b_{1}\right|=-\frac{1}{2},
$$

"Stieltjes constants" at $s=0$

Corollary (2022)

For any positive integer j, the height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right)$ of depth j has a pole of order $j-1$ at $s=0$. The singular part (degree $i \leq 0$) of its Laurent series is described by

$$
s^{j-1} \zeta\left(s,\{1\}^{j-1}\right) \equiv \frac{s-1}{2 \Gamma(s+1)} \quad\left(\bmod s^{j} \mathbb{C}[[s]]\right)
$$

and the linear coefficient is given by the series

$$
-\gamma_{1}^{[j]}(0)=(-1)^{j}-\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{(n-1)^{j}}+\left[s^{j}\right]\left(\frac{s-1}{2 \Gamma(s+1)}\right) .
$$

"Stieltjes constants" at $s=0$

Corollary (2022)
For any positive integer j, the height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right)$ of depth j has a pole of order $j-1$ at $s=0$. The singular part (degree $i \leq 0$) of its Laurent series is described by

$$
s^{j-1} \zeta\left(s,\{1\}^{j-1}\right) \equiv \frac{s-1}{2 \Gamma(s+1)} \quad\left(\bmod s^{j} \mathbb{C}[[s]]\right)
$$

and the linear coefficient is given by the series

$$
-\gamma_{1}^{[j]}(0)=(-1)^{j}-\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{(n-1)^{j}}+\left[s^{j}\right]\left(\frac{s-1}{2 \Gamma(s+1)}\right) .
$$

"Stieltjes constants" at $s=0$

Corollary (2022)
For any positive integer j, the height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right)$ of depth j has a pole of order $j-1$ at $s=0$. The singular part (degree $i \leq 0$) of its Laurent series is described by

$$
s^{j-1} \zeta\left(s,\{1\}^{j-1}\right) \equiv \frac{s-1}{2 \Gamma(s+1)} \quad\left(\bmod s^{j} \mathbb{C}[[s]]\right)
$$

and the linear coefficient is given by the series

$$
-\gamma_{1}^{[j]}(0)=(-1)^{j}-\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{(n-1)^{j}}+\left[s^{j}\right]\left(\frac{s-1}{2 \Gamma(s+1)}\right) .
$$

Sketch of proof. Use the second of the global series from the theorem; this time it is the $n=1$ term that is singular, use similar identities, such as

$$
b_{n}=\frac{B_{n}^{(n)}(1)}{n!}, \quad B_{1}^{(s+1)}(1)=\frac{1-s}{2}
$$

"Stieltjes constants" at $s=0$

Corollary (2022)
For any positive integer j, the height 1 zeta function $\zeta\left(s,\{1\}^{j-1}\right)$ of depth j has a pole of order $j-1$ at $s=0$. The singular part (degree $i \leq 0$) of its Laurent series is described by

$$
s^{j-1} \zeta\left(s,\{1\}^{j-1}\right) \equiv \frac{s-1}{2 \Gamma(s+1)} \quad\left(\bmod s^{j} \mathbb{C}[[s]]\right)
$$

and the linear coefficient is given by the series

$$
-\gamma_{1}^{[j]}(0)=(-1)^{j}-\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{(n-1)^{j}}+\left[s^{j}\right]\left(\frac{s-1}{2 \Gamma(s+1)}\right) .
$$

Sketch of proof. Use the second of the global series from the theorem; this time it is the $n=1$ term that is singular, use similar identities, such as

$$
b_{n}=\frac{B_{n}^{(n)}(1)}{n!}, \quad B_{1}^{(s+1)}(1)=\frac{1-s}{2} .
$$

- For $j=1$ this is a shifted version of the classical Mascheroni series; such shifted series are intimately connected to the values $\zeta^{\prime}(-k)$ for integers k, and with the Ramanujan summation of hyperharmonic numbers.

"Stieltjes constants" at $s=0$

For depth $j=1, \zeta(s)$ has no pole at $s=0$, but this corollary gives $\zeta(0)=-1 / 2$ and

$$
\gamma_{1}^{[1]}(0)=-\zeta^{\prime}(0)=\log \sqrt{2 \pi}=\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{n-1}+\frac{\gamma}{2}+\frac{1}{2} .
$$

"Stieltjes constants" at $s=0$

For depth $j=1, \zeta(s)$ has no pole at $s=0$, but this corollary gives $\zeta(0)=-1 / 2$ and

$$
\gamma_{1}^{[1]}(0)=-\zeta^{\prime}(0)=\log \sqrt{2 \pi}=\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{n-1}+\frac{\gamma}{2}+\frac{1}{2} .
$$

- For $j>1$, the first two Laurent coefficients at $s=0$ are

$$
\gamma_{1-j}^{[j]}(0)=-\frac{1}{2}, \quad \gamma_{2-j}^{[j]}(0)=\frac{1}{2}-\frac{\gamma}{2},
$$

as has been previously observed in the case $j=2$.

"Stieltjes constants" at $s=0$

For depth $j=1, \zeta(s)$ has no pole at $s=0$, but this corollary gives $\zeta(0)=-1 / 2$ and

$$
\gamma_{1}^{[1]}(0)=-\zeta^{\prime}(0)=\log \sqrt{2 \pi}=\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{n-1}+\frac{\gamma}{2}+\frac{1}{2} .
$$

- For $j>1$, the first two Laurent coefficients at $s=0$ are

$$
\gamma_{1-j}^{[j]}(0)=-\frac{1}{2}, \quad \gamma_{2-j}^{[j]}(0)=\frac{1}{2}-\frac{\gamma}{2},
$$

as has been previously observed in the case $j=2$.

- We calculate

$$
\begin{gathered}
\gamma_{1}^{[2]}(0)=\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{(n-1)^{2}}-1+\frac{\gamma^{2}}{4}-\frac{\gamma}{2}-\frac{\pi^{2}}{24}=-1.5171198 \cdots, \\
\gamma_{1}^{[3]}(0)=\sum_{n=2}^{\infty} \frac{\left|b_{n}\right|}{(n-1)^{3}}+1-\frac{\gamma^{2}}{4}-\frac{\gamma \pi^{2}}{24}+\frac{\pi^{2}}{24}+\frac{\gamma^{3}}{12}+\frac{\zeta(3)}{6}=1.3969896 \cdots,
\end{gathered}
$$

and we have $(-1)^{j} \gamma_{1}^{[j]}(0)<0$ for all j, with

$$
\lim _{j \rightarrow \infty}\left(\gamma_{1}^{[j]}(0)+(-1)^{j}\right)=\left|b_{2}\right|=\frac{1}{12}
$$

At the negative integers

Corollary (2022)

For each positive integer k the function $\zeta\left(s,\{1\}^{j-1}\right)$ has a Laurent series at $s=-k$ whose singular part (degree $i \leq 0$) is described by

$$
s^{j-1} \zeta\left(s-k,\{1\}^{j-1}\right) \equiv(-1)^{k-1}\binom{s-1}{k} \frac{B_{k+1}^{(s+1)}(1)}{(k+1) \Gamma(s+1)} \quad\left(\bmod s^{j} \mathbb{C}[[s]]\right)
$$

Consequently the Laurent coefficient in degree $1-j$ is

$$
\gamma_{1-j}^{[j]}(-k)=-\frac{B_{k+1}(1)}{k+1}=\zeta(-k) .
$$

If k is odd, then $\gamma_{1-j}^{[j]}(-k) \neq 0$ and thus $\zeta\left(s,\{1\}^{j-1}\right)$ has a pole of order $j-1$ at $s=-k$. If k is even, then $\gamma_{1-j}^{[j]}(-k)=0$, and for $j>1, \zeta\left(s,\{1\}^{j-1}\right)$ has a pole of order $j-2$ at $s=-k$, with $\gamma_{2-j}^{[j]}(-k)=(k+1) B_{k} /(2 k) \neq 0$ in this case. For any positive integer k, the linear coefficient is given by the series

$$
\frac{(-1)^{k+1}}{k!} \gamma_{1}^{[j]}(-k)=\sum_{n \neq k+1}^{\infty} \frac{(-1)^{n} b_{n}^{(k+1)}}{(n-k-1)^{j}}-\left[s^{j}\right]\left(\frac{\binom{s-1}{k} B_{k+1}^{(s+1)}}{(k+1)!\Gamma(s+1)}\right) .
$$

A special constant

The constant

$$
\tau_{1}=\sum_{n=1}^{\infty} \frac{\log (n+1)}{n(n+1)} \approx 1.2577468869 \cdots
$$

(decimal expansion A131688 in OEIS) appears in the asymptotic formula for $\log d(n!)$, and is also intimately related to series for the Stieltjes constants γ_{i}, having alternate expressions

$$
\tau_{1}=\int_{0}^{1} \frac{\psi(t+1)+\gamma}{t} d t=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \zeta(n+1)=-\sum_{n=2}^{\infty} \zeta^{\prime}(n)
$$

A special constant

The constant

$$
\tau_{1}=\sum_{n=1}^{\infty} \frac{\log (n+1)}{n(n+1)} \approx 1.2577468869 \ldots
$$

(decimal expansion A131688 in OEIS) appears in the asymptotic formula for $\log d(n!)$, and is also intimately related to series for the Stieltjes constants γ_{i}, having alternate expressions

$$
\tau_{1}=\int_{0}^{1} \frac{\psi(t+1)+\gamma}{t} d t=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \zeta(n+1)=-\sum_{n=2}^{\infty} \zeta^{\prime}(n) .
$$

- Our series for γ_{1} implies the additional series representation

$$
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n}^{(2)}=\tau_{1}
$$

A special constant

The constant

$$
\tau_{1}=\sum_{n=1}^{\infty} \frac{\log (n+1)}{n(n+1)} \approx 1.2577468869 \ldots
$$

(decimal expansion A131688 in OEIS) appears in the asymptotic formula for $\log d(n!)$, and is also intimately related to series for the Stieltjes constants γ_{i}, having alternate expressions

$$
\tau_{1}=\int_{0}^{1} \frac{\psi(t+1)+\gamma}{t} d t=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \zeta(n+1)=-\sum_{n=2}^{\infty} \zeta^{\prime}(n) .
$$

- Our series for γ_{1} implies the additional series representation

$$
\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n}^{(2)}=\tau_{1}
$$

- This constant and its representations have very natural analogues for height 1 zeta functions.

Generalized τ_{1}

Theorem

For all positive integers j, the constant $\tau_{1}^{[j]}:=\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n}^{(j+1)}$ is given by the series expressions

$$
\begin{aligned}
\tau_{1}^{[j]} & =\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n}^{(j+1)} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \zeta\left(n+1,\{1\}^{j-1}\right) \\
& =\sum_{m=1}^{\infty} \frac{1}{m!}\left[\begin{array}{c}
m \\
j
\end{array}\right] \log \left(1+\frac{1}{m}\right) \\
& =-\sum_{k=0}^{j-1}(-1)^{k} \sum_{n}^{*}\binom{n+k}{n} \zeta^{\prime}\left(k+n+1,\{1\}^{j-k-1}\right)
\end{aligned}
$$

where the sum \sum_{n}^{*} denotes that the $n=0$ term is omitted when $k=0$.

Generalized τ_{1}

Theorem

For all positive integers j, the constant $\tau_{1}^{[j]}:=\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n}^{(j+1)}$ is given by the series expressions

$$
\begin{aligned}
\tau_{1}^{[j]} & =\sum_{n=1}^{\infty}\left|b_{n}\right| H_{n}^{(j+1)} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \zeta\left(n+1,\{1\}^{j-1}\right) \\
& =\sum_{m=1}^{\infty} \frac{1}{m!}\left[\begin{array}{c}
m \\
j
\end{array}\right] \log \left(1+\frac{1}{m}\right) \\
& =-\sum_{k=0}^{j-1}(-1)^{k} \sum_{n}^{*}\binom{n+k}{n} \zeta^{\prime}\left(k+n+1,\{1\}^{j-k-1}\right)
\end{aligned}
$$

where the sum \sum_{n}^{*} denotes that the $n=0$ term is omitted when $k=0$.

- In a forthcoming paper I give additional representations of $\tau_{1}^{[j]}$, such as

$$
\tau_{1}^{[j]}=\int_{0}^{1} \zeta_{r}(j+1) d r \quad \text { and } \quad \tau_{1}=-\sum_{k=3}^{\infty} \sum_{j=0}^{\infty} \zeta^{\prime}\left(k,\{1\}^{j}\right)
$$

Generalized Euler - Mascheroni series

Corollary
For any nonnegative integer j we have

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n^{j+1}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta\left(n,\{1\}^{j}\right)=\gamma_{1}^{[j]}(1)+\tau_{1}^{[j]}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right)
$$

Generalized Euler - Mascheroni series

Corollary
For any nonnegative integer j we have

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n^{j+1}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta\left(n,\{1\}^{j}\right)=\gamma_{1}^{[j]}(1)+\tau_{1}^{[j]}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right)
$$

- This is not quite true as stated for $j=0$, since neither $\gamma_{1}^{[0]}(1)$ nor $\tau_{1}^{[0]}$ are defined.

Generalized Euler - Mascheroni series

Corollary
For any nonnegative integer j we have

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n^{j+1}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta\left(n,\{1\}^{j}\right)=\gamma_{1}^{[j]}(1)+\tau_{1}^{[j]}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right)
$$

- This is not quite true as stated for $j=0$, since neither $\gamma_{1}^{[0]}(1)$ nor $\tau_{1}^{[0]}$ are defined.
- However, $-\gamma_{1}^{[j]}(1)-\tau_{1}^{[j]}$ is the linear Laurent coefficient of the Dirichlet series

$$
F_{j}(s):=\sum_{m=j}^{\infty} \frac{1}{m!}\left[\begin{array}{c}
m \\
j
\end{array}\right](m+1)^{-s}
$$

at $s=0$, so observing that $F_{0}(s)=1$ compels us to define $\gamma_{1}^{[0]}(1)+\tau_{1}^{[0]}=0$.

Generalized Euler - Mascheroni series

Corollary
For any nonnegative integer j we have

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n^{j+1}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta\left(n,\{1\}^{j}\right)=\gamma_{1}^{[j]}(1)+\tau_{1}^{[j]}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right) .
$$

- This is not quite true as stated for $j=0$, since neither $\gamma_{1}^{[0]}(1)$ nor $\tau_{1}^{[0]}$ are defined.
- However, $-\gamma_{1}^{[j]}(1)-\tau_{1}^{[j]}$ is the linear Laurent coefficient of the Dirichlet series

$$
F_{j}(s):=\sum_{m=j}^{\infty} \frac{1}{m!}\left[\begin{array}{c}
m \\
j
\end{array}\right](m+1)^{-s}
$$

at $s=0$, so observing that $F_{0}(s)=1$ compels us to define $\gamma_{1}^{[0]}(1)+\tau_{1}^{[0]}=0$.

- With this convention, for $j=0$ we recover the classical series

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta(n)=0+\gamma
$$

Generalized Euler - Mascheroni series

Corollary
For any nonnegative integer j we have

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n^{j+1}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta\left(n,\{1\}^{j}\right)=\gamma_{1}^{[j]}(1)+\tau_{1}^{[j]}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right)
$$

- This is not quite true as stated for $j=0$, since neither $\gamma_{1}^{[0]}(1)$ nor $\tau_{1}^{[0]}$ are defined.
- However, $-\gamma_{1}^{[j]}(1)-\tau_{1}^{[j]}$ is the linear Laurent coefficient of the Dirichlet series

$$
F_{j}(s):=\sum_{m=j}^{\infty} \frac{1}{m!}\left[\begin{array}{c}
m \\
j
\end{array}\right](m+1)^{-s}
$$

at $s=0$, so observing that $F_{0}(s)=1$ compels us to define $\gamma_{1}^{[0]}(1)+\tau_{1}^{[0]}=0$.

- With this convention, for $j=0$ we recover the classical series

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta(n)=\gamma
$$

- For $j=1$ we recover a recent evaluation due to Coppo,

$$
\sum_{n=1}^{\infty} \frac{\left|b_{n}\right|}{n^{2}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta(n, 1)=\gamma_{1}+\tau_{1}+\frac{\gamma^{2}}{2}-\frac{\pi^{2}}{12}
$$

Ramanujan summation

Given a (divergent) series, Ramanujan assigned it an "algebraic constant" which is "the constant obtained by completing the remaining part in the [Euler-MacLaurin] theorem. We can substitute this constant which is like the centre of gravity of a body instead of its divergent infinite series."

Ramanujan summation

Given a (divergent) series, Ramanujan assigned it an "algebraic constant" which is "the constant obtained by completing the remaining part in the [Euler-MacLaurin] theorem. We can substitute this constant which is like the centre of gravity of a body instead of its divergent infinite series."

- Given a sequence $(f(n))_{n=1}^{\infty}$, and supposing there exists $f \in \mathcal{O}^{\pi}$ such that $f(z)=f(n)$ for $z=n \in \mathbb{N}$, the Ramanujan summation or Ramanujan constant $\sum_{n \geq 1}^{\mathcal{R}} f(n)$ is defined to be the value $R_{f}(1)$, where R_{f} is the unique solution in \mathcal{O}^{π} to the difference equation

$$
R_{f}(x)-R_{f}(x+1)=f(x), \quad \int_{1}^{2} R_{f}(x) d x=0
$$

Ramanujan summation

Given a (divergent) series, Ramanujan assigned it an "algebraic constant" which is "the constant obtained by completing the remaining part in the [Euler-MacLaurin] theorem. We can substitute this constant which is like the centre of gravity of a body instead of its divergent infinite series."

- Given a sequence $(f(n))_{n=1}^{\infty}$, and supposing there exists $f \in \mathcal{O}^{\pi}$ such that $f(z)=f(n)$ for $z=n \in \mathbb{N}$, the Ramanujan summation or Ramanujan constant $\sum_{n \geq 1}^{\mathcal{R}} f(n)$ is defined to be the value $R_{f}(1)$, where R_{f} is the unique solution in \mathcal{O}^{π} to the difference equation

$$
R_{f}(x)-R_{f}(x+1)=f(x), \quad \int_{1}^{2} R_{f}(x) d x=0
$$

- If in addition we have $f \in \mathcal{O}^{\log 2}$, then $\sum_{n \geq 1}^{\mathcal{R}} f(n)$ may also be given by the convergent series

$$
\sum_{n \geq 1}^{\mathcal{R}} f(n)=\sum_{n=1}^{\infty}\left|b_{n}\right|(D f)(n)
$$

where the operator D is defined on the space of sequences $(f(n))_{n=1}^{\infty}$ by

$$
(D f)(n+1)=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} f(j+1)
$$

Ramanujan summation

For a convergent series, the Ramanujan constant need not equal the sum of the series. However, one important property of Ramanujan summation is that analyticity of the terms implies analyticity of the "sum".

Ramanujan summation

For a convergent series, the Ramanujan constant need not equal the sum of the series. However, one important property of Ramanujan summation is that analyticity of the terms implies analyticity of the "sum".

- For example,

$$
\sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n^{s}}=\zeta(s)-\frac{1}{s-1} \quad(s \in \mathbb{C}), \quad \sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n}=\gamma
$$

Ramanujan summation

For a convergent series, the Ramanujan constant need not equal the sum of the series. However, one important property of Ramanujan summation is that analyticity of the terms implies analyticity of the "sum".

- For example,

$$
\sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n^{s}}=\zeta(s)-\frac{1}{s-1} \quad(s \in \mathbb{C}), \quad \sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n}=\gamma
$$

- For harmonic numbers H_{n}, we have (for example) the Ramanujan constants

$$
\sum_{n \geq 1}^{\mathcal{R}} H_{n}=\zeta^{\prime}(0)+\frac{3 \gamma}{2}+\frac{1}{2}, \quad \sum_{n \geq 1}^{\mathcal{R}} \frac{H_{n}}{n}=\gamma_{1}+\frac{\gamma^{2}}{2}-\frac{\pi^{2}}{12}+\tau_{1}
$$

Ramanujan summation

For a convergent series, the Ramanujan constant need not equal the sum of the series. However, one important property of Ramanujan summation is that analyticity of the terms implies analyticity of the "sum".

- For example,

$$
\sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n^{s}}=\zeta(s)-\frac{1}{s-1} \quad(s \in \mathbb{C}), \quad \sum_{n \geq 1}^{\mathcal{R}} \frac{1}{n}=\gamma
$$

- For harmonic numbers H_{n}, we have (for example) the Ramanujan constants

$$
\sum_{n \geq 1}^{\mathcal{R}} H_{n}=\zeta^{\prime}(0)+\frac{3 \gamma}{2}+\frac{1}{2}, \quad \sum_{n \geq 1}^{\mathcal{R}} \frac{H_{n}}{n}=\gamma_{1}+\frac{\gamma^{2}}{2}-\frac{\pi^{2}}{12}+\tau_{1}
$$

- The height 1 Stieltjes constants likewise appear in the Ramanujan constants of the multiple harmonic star sums

$$
\zeta_{n}^{\star}\left(\{1\}^{j}\right)=\sum_{n \geq n_{1} \geq n_{2} \geq \cdots \geq n_{j} \geq 1} \frac{1}{n_{1} n_{2} \cdots n_{j}}=H_{n, j}
$$

also known as Roman harmonic numbers. (Note $\zeta_{n}^{\star}(1)=H_{n, 1}=H_{n}$).

Ramanujan summation of multiple harmonic star sums

Theorem
For all positive integers j,

$$
\begin{aligned}
& \sum_{n \geq 1}^{\mathcal{R}} \frac{\zeta_{n-1}^{\star}\left(\{1\}^{j}\right)}{n-1}=\gamma_{1}^{[j]}(1)+\zeta(j+1)+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right) ; \\
& \sum_{n \geq 1}^{\mathcal{R}} \zeta_{n-1}^{\star}\left(\{1\}^{j}\right)=-\gamma_{1}^{[j]}(0)-(-1)^{j}-\left[s^{j}\right]\left(\frac{s-1}{2 \Gamma(s+1)}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n \geq 1}^{\mathcal{R}} \frac{\zeta_{n}^{\star}\left(\{1\}^{j-1}\right)-\zeta_{n}^{\star}\left(\{1\}^{j}\right)}{n(n-1)}= \\
& \sum_{n \geq 1}^{[j]}-\zeta(j+1) ; \\
& \sum_{n}^{\mathcal{R}} \frac{\zeta_{n}^{\star}\left(\{1\}^{j}\right)}{n}= \\
& \sum_{n \geq 1}^{\mathcal{R}} \zeta_{n}^{\star}\left(\{1\}^{j}\right)= \\
& \gamma_{1}^{[j]}(1)+\tau_{1}^{[j]}+\left[s^{j+1}\right]\left(\Gamma(s+1)^{-1}\right) ; \\
& \gamma_{1}^{[j-1]}(1)+\tau_{1}^{[j-1]}-\gamma_{1}^{[j]}(0)-(-1)^{j}-\left[s^{j}\right]\left(\frac{s-3}{2 \Gamma(s+1)}\right) .
\end{aligned}
$$

Ramanujan summation of multiple harmonic star sums

Theorem
For all positive integers j, using \sim to denote congruence modulo $\mathbb{Q}[\gamma, \zeta(2), \ldots, \zeta(j+1)]$,

$$
\begin{aligned}
\sum_{n \geq 1}^{\mathcal{R}} \frac{\zeta_{n-1}^{\star}\left(\{1\}^{j}\right)}{n-1} & \sim \gamma_{1}^{[j]}(1) ; \\
\sum_{n \geq 1}^{\mathcal{R}} \zeta_{n-1}^{\star}\left(\{1\}^{j}\right) & \sim-\gamma_{1}^{[j]}(0) ; \\
\sum_{n \geq 1}^{\mathcal{R}} \frac{\zeta_{n}^{\star}\left(\{1\}^{j-1}\right)-\zeta_{n}^{\star}\left(\{1\}^{j}\right)}{n(n-1)} & \sim \tau_{1}^{[j]}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \zeta\left(n+1,\{1\}^{j-1}\right) ; \\
\sum_{n \geq 1}^{\mathcal{R}} \frac{\zeta_{n}^{\star}\left(\{1\}^{j}\right)}{n} & \sim \gamma_{1}^{[j]}(1)+\tau_{1}^{[j]} \sim \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta\left(n,\{1\}^{j}\right) ; \\
\sum_{n \geq 1}^{\mathcal{R}} \zeta_{n}^{\star}\left(\{1\}^{j}\right) & \sim \gamma_{1}^{[j-1]}(1)+\tau_{1}^{[j-1]}-\gamma_{1}^{[j]}(0) .
\end{aligned}
$$

Curiosities

The classical series of Euler and of Mascheroni for γ, and the relations of the constant τ_{1} to $\zeta(s)$, generalize very naturally to height 1 multiple zeta functions. So do the Ramanujan constants of harmonic number series.

Curiosities

The classical series of Euler and of Mascheroni for γ, and the relations of the constant τ_{1} to $\zeta(s)$, generalize very naturally to height 1 multiple zeta functions. So do the Ramanujan constants of harmonic number series.

- Generalizations to higher heights are not immediately obvious in either case.

Curiosities

The classical series of Euler and of Mascheroni for γ, and the relations of the constant τ_{1} to $\zeta(s)$, generalize very naturally to height 1 multiple zeta functions. So do the Ramanujan constants of harmonic number series.

- Generalizations to higher heights are not immediately obvious in either case.
- I would be able to better explain explain why

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \gamma_{1}^{[j]}(1) & =\zeta(0), \\
\lim _{j \rightarrow \infty}\left(\gamma_{1}^{[j]}(-k)+(-1)^{j}\right) & =-\zeta(-k-1), \quad k=0,1,2, \ldots
\end{aligned}
$$

Curiosities

The classical series of Euler and of Mascheroni for γ, and the relations of the constant τ_{1} to $\zeta(s)$, generalize very naturally to height 1 multiple zeta functions. So do the Ramanujan constants of harmonic number series.

- Generalizations to higher heights are not immediately obvious in either case.
- I would be able to better explain explain why

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \gamma_{1}^{[j]}(1) & =\zeta(0), \\
\lim _{j \rightarrow \infty}\left(\gamma_{1}^{[j]}(-k)+(-1)^{j}\right) & =-\zeta(-k-1), \quad k=0,1,2, \ldots
\end{aligned}
$$

- I would also like to be able to better explain why the height 1 Stieltjes constants $\gamma_{1}^{[j]}(1)$, $\gamma_{1}^{[j]}(0)$, and the constant $\tau_{1}^{[j]}$, (which all relate to multiple zeta functions summed over strictly decreasing indices $n_{1}>\cdots>n_{j}$), appear in the Ramanujan summations of series of multiple harmonic star sums $\zeta_{n}^{\star}\left(\{1\}^{j}\right)$ (which are finite nested sums over nonincreasing indices $n \geq n_{1} \geq \cdots \geq n_{j}$).

Curiosities

The classical series of Euler and of Mascheroni for γ, and the relations of the constant τ_{1} to $\zeta(s)$, generalize very naturally to height 1 multiple zeta functions. So do the Ramanujan constants of harmonic number series.

- Generalizations to higher heights are not immediately obvious in either case.
- I would be able to better explain explain why

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \gamma_{1}^{[j]}(1) & =\zeta(0), \\
\lim _{j \rightarrow \infty}\left(\gamma_{1}^{[j]}(-k)+(-1)^{j}\right) & =-\zeta(-k-1), \quad k=0,1,2, \ldots
\end{aligned}
$$

- I would also like to be able to better explain why the height 1 Stieltjes constants $\gamma_{1}^{[j]}(1)$, $\gamma_{1}^{[j]}(0)$, and the constant $\tau_{1}^{[j]}$, (which all relate to multiple zeta functions summed over strictly decreasing indices $n_{1}>\cdots>n_{j}$), appear in the Ramanujan summations of series of multiple harmonic star sums $\zeta_{n}^{\star}\left(\{1\}^{j}\right)$ (which are finite nested sums over nonincreasing indices $n \geq n_{1} \geq \cdots \geq n_{j}$).

