

Equidistribution of exponential sums indexed by roots of polynomials

Théo Untrau (joint work with Emmanuel Kowalski) Journées Arithmétiques, Nancy 2023

- 1. Motivation: distribution of the classical Kloosterman sums
- 2. The case of exponential sums over the roots of $X^d 1$

3. The case of exponential sums over the roots of an arbitrary polynomial

Notation: $e(t) := e^{2i\pi t}$

For a prime number p, we define Kloosterman sums modulo p as follows:

$$K_p(a,b) = \sum_{x \in \mathbf{F}_p^{\times}} e\left(\frac{ax + bx^{-1}}{p}\right) \quad \text{ for any } a, b \in \mathbf{F}_p$$

For a prime number p, we define Kloosterman sums modulo p as follows:

$$K_p(a,b) = \sum_{x \in \mathbf{F}_p^{\times}} e\left(\frac{ax + bx^{-1}}{p}\right) \quad \text{ for any } a, b \in \mathbf{F}_p.$$

Examples of applications in number theory

- Kloosterman's variant of the circle method to tackle the problem of representations of large integers by quadratic forms of the form $aX^2 + bY^2 + cZ^2 + dT^2$;
- Fourier coefficients of modular forms, trace formulas.

For a prime number p, we define Kloosterman sums modulo p as follows:

$$K_p(a,b) = \sum_{x \in \mathbf{F}_p^{\times}} e\left(\frac{ax + bx^{-1}}{p}\right) \quad \text{ for any } a, b \in \mathbf{F}_p.$$

Examples of applications in number theory

- Kloosterman's variant of the circle method to tackle the problem of representations of large integers by quadratic forms of the form $aX^2 + bY^2 + cZ^2 + dT^2$;
- Fourier coefficients of modular forms, trace formulas.

These sums are real numbers, satisfying $|K_p(a,b)| \leq p-1$.

For a prime number p, we define Kloosterman sums modulo p as follows:

$$K_p(a,b) = \sum_{x \in \mathbf{F}_p^{\times}} e\left(\frac{ax + bx^{-1}}{p}\right) \quad \text{ for any } a, b \in \mathbf{F}_p.$$

Examples of applications in number theory

- Kloosterman's variant of the circle method to tackle the problem of representations of large integers by quadratic forms of the form aX² + bY² + cZ² + dT²;
- Fourier coefficients of modular forms, trace formulas.

These sums are real numbers, satisfying $|K_p(a,b)| \leq p-1$.

Weil's bound If $a, b \in \mathbf{F}_n^{\times}$,

 $|K_p(a,b)| \leqslant 2p^{1/2}$

Theorem (Katz, 1988)

The sets of normalized Kloosterman sums $\left\{\frac{1}{\sqrt{p}}K_p(a,1); a \in \mathbf{F}_p^{\times}\right\}$ become equidistributed in [-2,2] with respect to the Sato–Tate measure

$$\mathrm{d}\mu_{\mathrm{ST}}(x) := \frac{1}{2\pi}\sqrt{4 - x^2}\mathrm{d}x$$

as p goes to $+\infty$.

Theorem (Katz, 1988)

The sets of normalized Kloosterman sums $\left\{\frac{1}{\sqrt{p}}K_p(a,1); a \in \mathbf{F}_p^{\times}\right\}$ become equidistributed in [-2,2] with respect to the Sato–Tate measure

$$\mathrm{d}\mu_{\mathrm{ST}}(x) := \frac{1}{2\pi}\sqrt{4 - x^2}\mathrm{d}x$$

as p goes to $+\infty$.

In other words, for any $[c,d] \subseteq [-2,2]$,

$$\frac{\left|\left\{a \in \mathbf{F}_p^{\times}; \frac{1}{\sqrt{p}} K_p(a, 1) \in [c, d]\right\}\right|}{\left|\mathbf{F}_p^{\times}\right|} \xrightarrow{p \to \infty} \frac{1}{2\pi} \int_c^d \sqrt{4 - x^2} \mathrm{d}x.$$

Distribution of the sums $\frac{1}{\sqrt{p}}K_p(a,1)$ in [-2,2] as a varies in \mathbf{F}_p^{\times} , for several values of p.

The case of exponential sums over the roots of $X^d - 1$

Sums over the roots of $X^5 - 1$

Let us consider the following exponential sums

$$\sum_{\substack{x \in \mathbf{F}_p \\ x^5 = 1}} e\left(\frac{ax}{p}\right)$$

parametrized by $a \in \mathbf{F}_p$, for a prime number $p \equiv 1 \pmod{5}$. Which one of the following pictures represents them?

Sums over the roots of $X^5 - 1$

Let us consider the following exponential sums

$$\sum_{\substack{x \in \mathbf{F}_p \\ x^5 = 1}} e\left(\frac{ax}{p}\right)$$

parametrized by $a \in \mathbf{F}_p$, for a prime number $p \equiv 1 \pmod{5}$. Which one of the following pictures represents them?

Sums over the roots of $X^5 - 1$

Let us consider the following exponential sums

$$\sum_{\substack{x \in \mathbf{F}_p \\ x^5 = 1}} e\left(\frac{ax}{p}\right)$$

parametrized by $a \in \mathbf{F}_p$, for a prime number $p \equiv 1 \pmod{5}$. Which one of the following pictures represents them?

Let us consider the following sums

$$S_p(a,d) := \sum_{\substack{x \in \mathbf{F}_p \\ x^d = 1}} e\left(\frac{ax}{p}\right)$$

for a fixed integer d and $p\equiv 1\,(\mathrm{mod}\,d)$ going to $+\infty.$ These sums were studied in two articles of 2015:

Theorem^{1,2}

There exists a Laurent polynomial $g_d \colon (\mathbf{S}^1)^{\varphi(d)} \to \mathbf{C}$ such that the sets of sums $\{S_p(a,d); a \in \mathbf{F}_p\}$ become equidistributed in the image of g_d with respect to the pushforward measure via g_d of the Haar measure on $(\mathbf{S}^1)^{\varphi(d)}$, as $p \equiv 1 \pmod{d}$ goes to $+\infty$.

¹William Duke, Stephan Ramon Garcia and Bob Lutz. The graphic nature of Gaussian periods, Proc. Amer. Math. Soc. 2015.

²Stephan Ramon Garcia, Trevor Hyde and Bob Lutz. Gauss's hidden menagerie: from cyclotomy to supercharacters, Notices Amer. Math. Soc. 2015.

• Pick a generator w_p of the unique subgroup of order d and rewrite the sum in terms of this generator.

- Pick a generator w_p of the unique subgroup of order d and rewrite the sum in terms of this generator.
- Use the linear relations between powers of w_p to write the sums as a Laurent polynomial g_d in fewer variables, more precisely $\varphi(d)$.

- Pick a generator w_p of the unique subgroup of order d and rewrite the sum in terms of this generator.
- Use the linear relations between powers of w_p to write the sums as a Laurent polynomial g_d in fewer variables, more precisely $\varphi(d)$.
- Show the uniform distribution of the remaining $\varphi(d)$ variables in a torus of dimension $\varphi(d)$.

- Pick a generator w_p of the unique subgroup of order d and rewrite the sum in terms of this generator.
- Use the linear relations between powers of w_p to write the sums as a Laurent polynomial g_d in fewer variables, more precisely $\varphi(d)$.
- Show the uniform distribution of the remaining $\varphi(d)$ variables in a torus of dimension $\varphi(d)$.
- Find a geometric interpretation of the image of $(\mathbf{S}^1)^{\varphi(d)}$ via g_d . For instance when d is prime, the image of g_d is the region of the complex plane delimited by a d-cusp hypocycloid.

The case of exponential sums over the roots of an arbitrary polynomial Let us rephrase the key argument of the previous case:

•
$$\left\{ \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < \varphi(d)}; \ a \in \mathbf{F}_p \right\} \text{ become equidistributed in } (\mathbf{S}^1)^{\varphi(d)}.$$

Let us rephrase the key argument of the previous case:

•
$$\left\{ \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < \varphi(d)}; \ a \in \mathbf{F}_p \right\} \text{ become equidistributed in } (\mathbf{S}^1)^{\varphi(d)}.$$

•
$$\left\{ \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < d}; \ a \in \mathbf{F}_p \right\} \text{ become equidistributed in } \mathbf{H}_d \subseteq (\mathbf{S}^1)^d.$$

Let us rephrase the key argument of the previous case:

•
$$\left\{ \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < \varphi(d)}; \ a \in \mathbf{F}_p \right\} \text{ become equidistributed in } (\mathbf{S}^1)^{\varphi(d)}.$$

•
$$\left\{ \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < d}; \ a \in \mathbf{F}_p \right\} \text{ become equidistributed in } \mathbf{H}_d \subseteq (\mathbf{S}^1)^d.$$

• The random variable

$$\begin{array}{rcl} \mathbf{F}_p & \rightarrow & (\mathbf{S}^1)^d \\ a & \mapsto & \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < d} \end{array}$$

converges in law to the uniform distribution on H_d .

$$\begin{aligned} \mathbf{F}_p &\to \qquad (\mathbf{S}^1)^d \\ a &\mapsto \quad \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < d} \end{aligned}$$

$$\begin{aligned} \mathbf{F}_p &\to \qquad (\mathbf{S}^1)^d \\ a &\mapsto \quad \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < d} \end{aligned}$$

Step 1:

$$\begin{array}{ccc} \mathbf{F}_p & \to & \mathbf{C}(\mu_d(\mathbf{F}_p), \mathbf{S}^1) \\ \\ a & \mapsto & \middle| \begin{array}{c} \mu_d(\mathbf{F}_p) & \to & \mathbf{S}^1 \\ x & \mapsto & e\left(\frac{ax}{p}\right) \end{array}$$

$$\begin{aligned} \mathbf{F}_p &\to \qquad (\mathbf{S}^1)^d \\ a &\mapsto \quad \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < d} \end{aligned}$$

Step 1:

$$\begin{aligned} \mathbf{F}_p &\to & \mathbf{C}(\mu_d(\mathbf{F}_p), \mathbf{S}^1) \\ a &\mapsto & \left| \begin{array}{cc} \mu_d(\mathbf{F}_p) &\to & \mathbf{S}^1 \\ x &\mapsto & e\left(\frac{ax}{p}\right) \end{aligned} \right. \end{aligned}$$

• Advantage: we no longer use the ordering of the roots!

$$\begin{aligned} \mathbf{F}_p &\to \qquad (\mathbf{S}^1)^d \\ a &\mapsto \quad \left(e\left(\frac{aw_p^k}{p}\right) \right)_{0 \leqslant k < d} \end{aligned}$$

Step 1:

$$\begin{array}{rccc} \mathbf{F}_p & \to & \mathbf{C}(\mu_d(\mathbf{F}_p), \mathbf{S}^1) \\ a & \mapsto & \middle| \begin{array}{c} \mu_d(\mathbf{F}_p) & \to & \mathbf{S}^1 \\ x & \mapsto & e\left(\frac{ax}{p}\right) \end{array}$$

- Advantage: we no longer use the ordering of the roots!
- Drawback: These random variables take values in a space that depends on *p*.

Modifying the previous approach

Step 2: To modify

$$\begin{array}{cccc} \mathbf{F}_p & \to & \mathbf{C}(\mu_d(\mathbf{F}_p), \mathbf{S}^1) \\ \\ a & \mapsto & \left| \begin{array}{ccc} \mu_d(\mathbf{F}_p) & \to & \mathbf{S}^1 \\ x & \mapsto & e\left(\frac{ax}{p}\right) \end{array} \right. \end{array}$$

let us consider

$$\begin{aligned} \mathbf{F}_p &\to & \mathbf{C}(\mu_d(\mathbf{C}), \mathbf{S}^1) \\ a &\mapsto & \left| \begin{array}{cc} \mu_d(\mathbf{C}) &\to & \mathbf{S}^1 \\ x &\mapsto & e\left(\frac{a\varpi_{\mathfrak{p}}(x)}{p}\right) \end{aligned} \right. \end{aligned}$$

Modifying the previous approach

Step 2: To modify

$$\begin{aligned} \mathbf{F}_p &\to & \mathbf{C}(\mu_d(\mathbf{F}_p), \mathbf{S}^1) \\ a &\mapsto & \middle| \begin{array}{c} \mu_d(\mathbf{F}_p) &\to & \mathbf{S}^1 \\ x &\mapsto & e\left(\frac{ax}{p}\right) \end{aligned}$$

let us consider

$$\begin{aligned} \mathbf{F}_p &\to & \mathbf{C}(\mu_d(\mathbf{C}), \mathbf{S}^1) \\ a &\mapsto & \left| \begin{array}{c} \mu_d(\mathbf{C}) &\to & \mathbf{S}^1 \\ x &\mapsto & e\left(\frac{a\varpi_{\mathfrak{p}}(x)}{p}\right) \end{aligned} \right. \end{aligned}$$

for all ideals \mathfrak{p} of $K := \mathbf{Q}(\zeta_d)$ lying above p (the condition $p \equiv 1 \pmod{d}$) ensures that $\mathcal{O}_K/\mathfrak{p} \simeq \mathbf{F}_p$).

Modifying the previous approach

Step 2: To modify

$$\begin{aligned} \mathbf{F}_p &\to & \mathbf{C}(\mu_d(\mathbf{F}_p), \mathbf{S}^1) \\ a &\mapsto & \middle| \begin{array}{c} \mu_d(\mathbf{F}_p) &\to & \mathbf{S}^1 \\ x &\mapsto & e\left(\frac{ax}{p}\right) \end{aligned}$$

let us consider

$$\begin{aligned} \mathbf{F}_p &\to & \mathbf{C}(\mu_d(\mathbf{C}), \mathbf{S}^1) \\ a &\mapsto & \left| \begin{array}{c} \mu_d(\mathbf{C}) &\to & \mathbf{S}^1 \\ x &\mapsto & e\left(\frac{a\varpi_{\mathfrak{p}}(x)}{p}\right) \end{aligned} \right. \end{aligned}$$

for all ideals \mathfrak{p} of $K := \mathbf{Q}(\zeta_d)$ lying above p (the condition $p \equiv 1 \pmod{d}$ ensures that $\mathcal{O}_K/\mathfrak{p} \simeq \mathbf{F}_p$).

Conclusion: We no longer use the ordering of the roots, and our random variables take values in the same space.

Let $g \in \mathbf{Z}[X]$ be a monic and separable polynomial. We introduce the following notations:

- Z_g is the set of complex roots of g;
- $K_g := \mathbf{Q}(\mathbf{Z}_g)$ its splitting field, with ring of integers \mathbf{O}_g .
- S_g is the set of prime ideals of O_g with residual degree 1 and not dividing the discriminant of g.

Definition of the unitary random variables

For all $\mathfrak{p}\in \mathbb{S}_g$ (lying above p say) we define the random variable

$$U_{\mathfrak{p}} : \mathbf{O}_{g}/\mathfrak{p} \to \mathbf{C}(\mathbf{Z}_{g}, \mathbf{S}^{1})$$
$$a \mapsto \begin{vmatrix} \mathbf{Z}_{g} \to \mathbf{S}^{1} \\ x \mapsto e\left(\frac{a\varpi_{\mathfrak{p}}(x)}{p}\right) \end{vmatrix}$$

Theorem (Kowalski–U. 2023)

As $\|\mathfrak{p}\|$ goes to infinity, the random variables $U_{\mathfrak{p}}$ converge in law to the uniform distribution on a certain subgroup H_g of $C(\mathbb{Z}_g, \mathbf{S}^1)$, orthogonal to the **Z**-module of additive relations between the roots of g.

Theorem (Kowalski–U. 2023)

As $\|\mathfrak{p}\|$ goes to infinity, the random variables $U_{\mathfrak{p}}$ converge in law to the uniform distribution on a certain subgroup H_g of $C(\mathbb{Z}_g, \mathbf{S}^1)$, orthogonal to the Z-module of additive relations between the roots of g.

Definition (module of additive relations)

$$\mathbf{R}_g := \left\{ \alpha \colon \mathbf{Z}_g \to \mathbf{Z} \ \mid \ \sum_{x \in \mathbf{Z}_g} \alpha(x) x = 0 \right\}$$

Theorem (Kowalski–U. 2023)

As $\|\mathfrak{p}\|$ goes to infinity, the random variables $U_{\mathfrak{p}}$ converge in law to the uniform distribution on a certain subgroup H_g of $C(\mathbb{Z}_g, \mathbf{S}^1)$, orthogonal to the Z-module of additive relations between the roots of g.

Definition (module of additive relations)

$$\mathbf{R}_g := \left\{ \alpha \colon \mathbf{Z}_g \to \mathbf{Z} \mid \sum_{x \in \mathbf{Z}_g} \alpha(x) x = 0 \right\}$$

Example: If $R_g = \{0\}$, then $H_g = C(Z_g, S^1)$.

Corollary (Kowalski–U. 2023)

As p goes to infinity among the prime numbers totally split in $K_g, \, {\rm the} \, {\rm sums}$

$$\sum_{\substack{x \in \mathbf{F}_p \\ g(x) \equiv 0 \pmod{p}}} e\left(\frac{ax}{p}\right);$$

become equidistributed in C with respect to a measure μ_g that is related to the module of additive relations between the roots of g.

Corollary (Kowalski–U. 2023)

As p goes to infinity among the prime numbers totally split in $K_g, \, {\rm the} \, {\rm sums}$

$$\sum_{\substack{x \in \mathbf{F}_p \\ g(x) \equiv 0 \pmod{p}}} e\left(\frac{ax}{p}\right);$$

become equidistributed in C with respect to a measure μ_g that is related to the module of additive relations between the roots of g.

Example: If $R_g = \{0\}$, then the sums above become equidistributed with respect of the law of the sum of $\deg(g)$ independent Steinhaus random variables.

Illustration

The two pictures below represent

$$\left\{\sum_{x\in Z_g(\mathbf{F}_p)} e\left(\frac{ax}{p}\right); \ a\in \mathbf{F}_p\right\}$$

for two different choices of polynomial g of degree 3.

Thank you for your attention!

⁻ Emmanuel Kowalski and Théo Untrau, Ultra-short sums of trace functions, available on arXiv.