

université
 ${ }^{\text {de }}$ BORDEAUX

Mathématiques de B orde a ux

Equidistribution of exponential sums indexed by roots of polynomials

Théo Untrau (joint work with Emmanuel Kowalski)
Journées Arithmétiques, Nancy 2023

Plan of the talk

1. Motivation: distribution of the classical Kloosterman sums
2. The case of exponential sums over the roots of $X^{d}-1$
3. The case of exponential sums over the roots of an arbitrary polynomial

Notation: $e(t):=e^{2 i \pi t}$

Motivation: distribution of the classical Kloosterman sums

Motivation: distribution of the classical Kloosterman sums

For a prime number p, we define Kloosterman sums modulo p as follows:

$$
K_{p}(a, b)=\sum_{x \in \mathbf{F}_{p}^{\times}} e\left(\frac{a x+b x^{-1}}{p}\right) \quad \text { for any } a, b \in \mathbf{F}_{p}
$$

Motivation: distribution of the classical Kloosterman sums

For a prime number p, we define Kloosterman sums modulo p as follows:

$$
K_{p}(a, b)=\sum_{x \in \mathbf{F}_{p}^{\times}} e\left(\frac{a x+b x^{-1}}{p}\right) \quad \text { for any } a, b \in \mathbf{F}_{p}
$$

Examples of applications in number theory

- Kloosterman's variant of the circle method to tackle the problem of representations of large integers by quadratic forms of the form $a X^{2}+b Y^{2}+c Z^{2}+d T^{2} ;$
- Fourier coefficients of modular forms, trace formulas.

Motivation: distribution of the classical Kloosterman sums

For a prime number p, we define Kloosterman sums modulo p as follows:

$$
K_{p}(a, b)=\sum_{x \in \mathbf{F}_{p}^{\times}} e\left(\frac{a x+b x^{-1}}{p}\right) \quad \text { for any } a, b \in \mathbf{F}_{p}
$$

Examples of applications in number theory

- Kloosterman's variant of the circle method to tackle the problem of representations of large integers by quadratic forms of the form $a X^{2}+b Y^{2}+c Z^{2}+d T^{2} ;$
- Fourier coefficients of modular forms, trace formulas.

These sums are real numbers, satisfying $\left|K_{p}(a, b)\right| \leqslant p-1$.

Motivation: distribution of the classical Kloosterman sums

For a prime number p, we define Kloosterman sums modulo p as follows:

$$
K_{p}(a, b)=\sum_{x \in \mathbf{F}_{p}^{\times}} e\left(\frac{a x+b x^{-1}}{p}\right) \quad \text { for any } a, b \in \mathbf{F}_{p} .
$$

Examples of applications in number theory

- Kloosterman's variant of the circle method to tackle the problem of representations of large integers by quadratic forms of the form $a X^{2}+b Y^{2}+c Z^{2}+d T^{2} ;$
- Fourier coefficients of modular forms, trace formulas.

These sums are real numbers, satisfying $\left|K_{p}(a, b)\right| \leqslant p-1$.

Weil's bound

If $a, b \in \mathbf{F}_{p}^{\times}$,

$$
\left|K_{p}(a, b)\right| \leqslant 2 p^{1 / 2}
$$

Motivation: distribution of the classical Kloosterman sums

Theorem (Katz, 1988)

The sets of normalized Kloosterman sums $\left\{\frac{1}{\sqrt{p}} K_{p}(a, 1) ; a \in \mathbf{F}_{p}^{\times}\right\}$ become equidistributed in $[-2,2]$ with respect to the Sato-Tate measure

$$
\mathrm{d} \mu_{\mathrm{ST}}(x):=\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathrm{~d} x
$$

as p goes to $+\infty$.

Motivation: distribution of the classical Kloosterman sums

Theorem (Katz, 1988)

The sets of normalized Kloosterman sums $\left\{\frac{1}{\sqrt{p}} K_{p}(a, 1) ; a \in \mathbf{F}_{p}^{\times}\right\}$ become equidistributed in $[-2,2]$ with respect to the Sato-Tate measure

$$
\mathrm{d} \mu_{\mathrm{ST}}(x):=\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathrm{~d} x
$$

as p goes to $+\infty$.
In other words, for any $[c, d] \subseteq[-2,2]$,

$$
\frac{\left|\left\{a \in \mathbf{F}_{p}^{\times} ; \frac{1}{\sqrt{p}} K_{p}(a, 1) \in[c, d]\right\}\right|}{\left|\mathbf{F}_{p}^{\times}\right|} \underset{p \rightarrow \infty}{\longrightarrow} \frac{1}{2 \pi} \int_{c}^{d} \sqrt{4-x^{2}} \mathrm{~d} x .
$$

Motivation: distribution of the classical Kloosterman sums

$p=191$

$$
p=18367
$$

$$
p=2887
$$

$$
p=45989
$$

Distribution of the sums $\frac{1}{\sqrt{p}} K_{p}(a, 1)$ in $[-2,2]$ as a varies in \mathbf{F}_{p}^{\times}, for several values of p.

The case of exponential sums over the roots of $X^{d}-1$

Sums over the roots of $X^{5}-1$

Let us consider the following exponential sums

$$
\sum_{\substack{x \in \mathbf{F}_{p} \\ x^{5}=1}} e\left(\frac{a x}{p}\right)
$$

parametrized by $a \in \mathbf{F}_{p}$, for a prime number $p \equiv 1(\bmod 5)$. Which one of the following pictures represents them?

Sums over the roots of $X^{5}-1$

Let us consider the following exponential sums

$$
\sum_{\substack{x \in \mathbf{F}_{p} \\ x^{5}=1}} e\left(\frac{a x}{p}\right)
$$

parametrized by $a \in \mathbf{F}_{p}$, for a prime number $p \equiv 1(\bmod 5)$. Which one of the following pictures represents them?

Sums over the roots of $X^{5}-1$

Let us consider the following exponential sums

$$
\sum_{\substack{x \in \mathbf{F}_{p} \\ x^{5}=1}} e\left(\frac{a x}{p}\right)
$$

parametrized by $a \in \mathbf{F}_{p}$, for a prime number $p \equiv 1(\bmod 5)$. Which one of the following pictures represents them?

Sums over the roots of $X^{d}-1$

Let us consider the following sums

$$
S_{p}(a, d):=\sum_{\substack{x \in \mathbf{F}_{p} \\ x^{d}=1}} e\left(\frac{a x}{p}\right)
$$

for a fixed integer d and $p \equiv 1(\bmod d)$ going to $+\infty$. These sums were studied in two articles of 2015:

Theorem ${ }^{1,2}$

There exists a Laurent polynomial $g_{d}:\left(\mathbf{S}^{1}\right)^{\varphi(d)} \rightarrow \mathbf{C}$ such that the sets of sums $\left\{S_{p}(a, d) ; a \in \mathbf{F}_{p}\right\}$ become equidistributed in the image of g_{d} with respect to the pushforward measure via g_{d} of the Haar measure on $\left(\mathbf{S}^{1}\right)^{\varphi(d)}$, as $p \equiv 1(\bmod d)$ goes to $+\infty$.

[^0]
Sums over the roots of $X^{d}-1$

Summary of the proof

- Pick a generator w_{p} of the unique subgroup of order d and rewrite the sum in terms of this generator.

Sums over the roots of $X^{d}-1$

Summary of the proof

- Pick a generator w_{p} of the unique subgroup of order d and rewrite the sum in terms of this generator.
- Use the linear relations between powers of w_{p} to write the sums as a Laurent polynomial g_{d} in fewer variables, more precisely $\varphi(d)$.

Sums over the roots of $X^{d}-1$

Summary of the proof

- Pick a generator w_{p} of the unique subgroup of order d and rewrite the sum in terms of this generator.
- Use the linear relations between powers of w_{p} to write the sums as a Laurent polynomial g_{d} in fewer variables, more precisely $\varphi(d)$.
- Show the uniform distribution of the remaining $\varphi(d)$ variables in a torus of dimension $\varphi(d)$.

Sums over the roots of $X^{d}-1$

Summary of the proof

- Pick a generator w_{p} of the unique subgroup of order d and rewrite the sum in terms of this generator.
- Use the linear relations between powers of w_{p} to write the sums as a Laurent polynomial g_{d} in fewer variables, more precisely $\varphi(d)$.
- Show the uniform distribution of the remaining $\varphi(d)$ variables in a torus of dimension $\varphi(d)$.
- Find a geometric interpretation of the image of $\left(\mathbf{S}^{1}\right)^{\varphi(d)}$ via g_{d}. For instance when d is prime, the image of g_{d} is the region of the complex plane delimited by a d-cusp hypocycloid.

The case of exponential sums over the roots of an arbitrary polynomial

Modifying the previous approach

Let us rephrase the key argument of the previous case:

- $\left\{\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<\varphi(d)} ; a \in \mathbf{F}_{p}\right\}$ become equidistributed in $\left(\mathbf{S}^{1}\right)^{\varphi(d)}$.

Modifying the previous approach

Let us rephrase the key argument of the previous case:

- $\left\{\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<\varphi(d)} ; a \in \mathbf{F}_{p}\right\}$ become equidistributed in $\left(\mathbf{S}^{1}\right)^{\varphi(d)}$.
- $\left\{\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<d} ; a \in \mathbf{F}_{p}\right\}$ become equidistributed in $\mathrm{H}_{d} \subseteq\left(\mathbf{S}^{1}\right)^{d}$.

Modifying the previous approach

Let us rephrase the key argument of the previous case:

- $\left\{\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<\varphi(d)} ; a \in \mathbf{F}_{p}\right\}$ become equidistributed in $\left(\mathbf{S}^{1}\right)^{\varphi(d)}$.
- $\left\{\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<d} ; a \in \mathbf{F}_{p}\right\}$ become equidistributed in $\mathrm{H}_{d} \subseteq\left(\mathbf{S}^{1}\right)^{d}$.
- The random variable

$$
\begin{array}{rlr}
\mathbf{F}_{p} & \rightarrow & \left(\mathbf{S}^{1}\right)^{d} \\
a & \mapsto & \left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<d}
\end{array}
$$

converges in law to the uniform distribution on H_{d}.

Modifying the previous approach

Trying not to use the notion of primitive root, let us modify the random variable

$$
\begin{aligned}
\mathbf{F}_{p} & \rightarrow \\
a & \mapsto\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<d}
\end{aligned}
$$

Modifying the previous approach

Trying not to use the notion of primitive root, let us modify the random variable

$$
\begin{aligned}
\mathbf{F}_{p} & \rightarrow \\
a & \mapsto\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<d}
\end{aligned}
$$

Step 1:

$$
\begin{array}{ccccc}
\mathbf{F}_{p} & \rightarrow & \mathrm{C}\left(\mu_{d}\left(\mathbf{F}_{p}\right), \mathbf{S}^{1}\right) \\
a & \mapsto & \mu_{d}\left(\mathbf{F}_{p}\right) & \rightarrow & \mathbf{S}^{1} \\
x & \mapsto & e\left(\frac{a x}{p}\right)
\end{array}
$$

Modifying the previous approach

Trying not to use the notion of primitive root, let us modify the random variable

$$
\begin{aligned}
\mathbf{F}_{p} & \rightarrow \\
a & \mapsto\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<d} \mathbf{S}^{d} \\
& \mapsto(
\end{aligned}
$$

Step 1:

\[

\]

- Advantage: we no longer use the ordering of the roots!

Modifying the previous approach

Trying not to use the notion of primitive root, let us modify the random variable

$$
\begin{aligned}
\mathbf{F}_{p} & \rightarrow \\
a & \mapsto\left(e\left(\frac{a w_{p}^{k}}{p}\right)\right)_{0 \leqslant k<d} \mathbf{S}^{d} \\
& \mapsto(
\end{aligned}
$$

Step 1:

$$
\begin{array}{ccccc}
\mathbf{F}_{p} & \rightarrow & \mathrm{C}\left(\mu_{d}\left(\mathbf{F}_{p}\right), \mathbf{S}^{1}\right) \\
a & \mapsto & \mu_{d}\left(\mathbf{F}_{p}\right) & \rightarrow & \mathbf{S}^{1} \\
x & \mapsto & e\left(\frac{a x}{p}\right)
\end{array}
$$

- Advantage: we no longer use the ordering of the roots!
- Drawback: These random variables take values in a space that depends on p.

Modifying the previous approach

Step 2: To modify

$$
\begin{array}{cccc}
\mathbf{F}_{p} & \rightarrow & \mathrm{C}\left(\mu_{d}\left(\mathbf{F}_{p}\right), \mathbf{S}^{1}\right) \\
a & \mapsto & \begin{array}{ccc}
\mu_{d}\left(\mathbf{F}_{p}\right) & \rightarrow & \mathbf{S}^{1} \\
x & \mapsto & e\left(\frac{a x}{p}\right)
\end{array}
\end{array}
$$

let us consider

\[

\]

Modifying the previous approach

Step 2: To modify

\[

\]

let us consider

\[

\]

for all ideals \mathfrak{p} of $K:=\mathbf{Q}\left(\zeta_{d}\right)$ lying above $p($ the condition $p \equiv 1(\bmod d)$ ensures that $\mathcal{O}_{K} / \mathfrak{p} \simeq \mathbf{F}_{p}$).

Modifying the previous approach

Step 2: To modify

$$
\begin{array}{ccccc}
\mathbf{F}_{p} & \rightarrow & \mathrm{C}\left(\mu_{d}\left(\mathbf{F}_{p}\right), \mathbf{S}^{1}\right) \\
a & \mapsto & \mu_{d}\left(\mathbf{F}_{p}\right) & \rightarrow & \mathbf{S}^{1} \\
x & \mapsto & e\left(\frac{a x}{p}\right)
\end{array}
$$

let us consider

$$
\begin{array}{rll|ccc}
\mathbf{F}_{p} & \rightarrow & \mathbf{C}\left(\mu_{d}(\mathbf{C}), \mathbf{S}^{1}\right) \\
a & \mapsto & \mu_{d}(\mathbf{C}) & \rightarrow & \mathbf{S}^{1} \\
x & \mapsto & e\left(\frac{a \varpi_{p}(x)}{p}\right)
\end{array}
$$

for all ideals \mathfrak{p} of $K:=\mathbf{Q}\left(\zeta_{d}\right)$ lying above p (the condition $p \equiv 1(\bmod d)$ ensures that $\mathcal{O}_{K} / \mathfrak{p} \simeq \mathbf{F}_{p}$).
Conclusion: We no longer use the ordering of the roots, and our random variables take values in the same space.

A well suited framework

Let $g \in \mathbf{Z}[X]$ be a monic and separable polynomial. We introduce the following notations:

- Z_{g} is the set of complex roots of g;
- $K_{g}:=\mathbf{Q}\left(\mathrm{Z}_{g}\right)$ its splitting field, with ring of integers \mathbf{O}_{g}.
- \mathcal{S}_{g} is the set of prime ideals of \mathbf{O}_{g} with residual degree 1 and not dividing the discriminant of g.

Definition of the unitary random variables

For all $\mathfrak{p} \in \mathcal{S}_{g}$ (lying above p say) we define the random variable

$$
\begin{array}{rllll}
U_{\mathfrak{p}}: \mathbf{O}_{g} / \mathfrak{p} & \rightarrow & & \mathrm{C}\left(\mathrm{Z}_{g}, \mathbf{S}^{1}\right) \\
a & \mapsto \left\lvert\, \begin{array}{clc}
\mathrm{Z}_{g} & \rightarrow & \mathbf{S}^{1} \\
x & \mapsto & e\left(\frac{a \varpi_{\mathfrak{p}}(x)}{p}\right)
\end{array}\right.
\end{array}
$$

Convergence in law of the unitary random variables

Theorem (Kowalski-U. 2023)

As $\|\mathfrak{p}\|$ goes to infinity, the random variables $U_{\mathfrak{p}}$ converge in law to the uniform distribution on a certain subgroup H_{g} of $\mathrm{C}\left(\mathrm{Z}_{g}, \mathbf{S}^{1}\right)$, orthogonal to the \mathbf{Z}-module of additive relations between the roots of g.

Convergence in law of the unitary random variables

Theorem (Kowalski-U. 2023)

As $\|\mathfrak{p}\|$ goes to infinity, the random variables $U_{\mathfrak{p}}$ converge in law to the uniform distribution on a certain subgroup H_{g} of $\mathrm{C}\left(\mathrm{Z}_{g}, \mathbf{S}^{1}\right)$, orthogonal to the Z-module of additive relations between the roots of g.

Definition (module of additive relations)

$$
\mathbf{R}_{g}:=\left\{\alpha: \mathbf{Z}_{g} \rightarrow \mathbf{Z} \mid \sum_{x \in \mathbf{Z}_{g}} \alpha(x) x=0\right\}
$$

Convergence in law of the unitary random variables

Theorem (Kowalski-U. 2023)

As $\|\mathfrak{p}\|$ goes to infinity, the random variables $U_{\mathfrak{p}}$ converge in law to the uniform distribution on a certain subgroup H_{g} of $\mathrm{C}\left(\mathrm{Z}_{g}, \mathbf{S}^{1}\right)$, orthogonal to the Z-module of additive relations between the roots of g.

Definition (module of additive relations)

$$
\mathbf{R}_{g}:=\left\{\alpha: \mathrm{Z}_{g} \rightarrow \mathbf{Z} \mid \sum_{x \in \mathbf{Z}_{g}} \alpha(x) x=0\right\}
$$

Example: If $\mathrm{R}_{g}=\{0\}$, then $\mathrm{H}_{g}=\mathrm{C}\left(\mathrm{Z}_{g}, \mathbf{S}^{1}\right)$.

Equidistribution of exponential sums over roots

Corollary (Kowalski-U. 2023)

As p goes to infinity among the prime numbers totally split in K_{g}, the sums

$$
\sum_{\substack{\left.x \in \mathbf{F}_{p}\\\right) \equiv(\bmod p)}} e\left(\frac{a x}{p}\right) ;
$$

become equidistributed in \mathbf{C} with respect to a measure μ_{g} that is related to the module of additive relations between the roots of g.

Equidistribution of exponential sums over roots

Corollary (Kowalski-U. 2023)

As p goes to infinity among the prime numbers totally split in K_{g}, the sums

$$
\sum_{\substack{\left.x \in \mathbf{F}_{p}\\\right) \equiv(\bmod p)}} e\left(\frac{a x}{p}\right) ;
$$

become equidistributed in \mathbf{C} with respect to a measure μ_{g} that is related to the module of additive relations between the roots of g.

Example: If $\mathrm{R}_{g}=\{0\}$, then the sums above become equidistributed with respect ot the law of the sum of $\operatorname{deg}(g)$ independent Steinhaus random variables.

Illustration

The two pictures below represent

$$
\left\{\sum_{x \in \mathrm{Z}_{g}\left(\mathbf{F}_{p}\right)} e\left(\frac{a x}{p}\right) ; a \in \mathbf{F}_{p}\right\}
$$

for two different choices of polynomial g of degree 3 .

$$
\begin{gathered}
g=X^{3}+2 X^{2}+3 \\
p=30113
\end{gathered}
$$

$$
g=X^{3}+X+3
$$

$$
p=30223
$$

Thank you for your attention!

- Emmanuel Kowalski and Théo Untrau, Ultra-short sums of trace functions, available on arXiv.

[^0]: ${ }^{1}$ William Duke, Stephan Ramon Garcia and Bob Lutz. The graphic nature of Gaussian periods, Proc. Amer. Math. Soc. 2015.
 ${ }^{2}$ Stephan Ramon Garcia, Trevor Hyde and Bob Lutz. Gauss's hidden menagerie: from cyclotomy to supercharacters, Notices Amer. Math. Soc. 2015.

