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Notation: e(t) := e2iπt
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Motivation: distribution of the classical Kloosterman sums

For a prime number p, we define Kloosterman sums modulo p as follows:

Kp(a, b) =
∑
x∈F×

p

e

(
ax+ bx−1

p

)
for any a, b ∈ Fp.

Examples of applications in number theory

� Kloosterman’s variant of the circle method to tackle the problem of

representations of large integers by quadratic forms of the form

aX2 + bY 2 + cZ2 + dT 2;

� Fourier coefficients of modular forms, trace formulas.

These sums are real numbers, satisfying |Kp(a, b)| 6 p− 1.

Weil’s bound

If a, b ∈ F×p ,

|Kp(a, b)| 6 2p1/2
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Motivation: distribution of the classical Kloosterman sums

Theorem (Katz, 1988)

The sets of normalized Kloosterman sums
{

1√
pKp(a, 1); a ∈ F×p

}
become equidistributed in [−2, 2] with respect to the Sato–Tate measure

dµST(x) :=
1

2π

√
4− x2dx

as p goes to +∞.

In other words, for any [c, d] ⊆ [−2, 2],∣∣∣{a ∈ F×p ;
1√
pKp(a, 1) ∈ [c, d]

}∣∣∣∣∣F×p ∣∣ −→
p→∞

1

2π

∫ d

c

√
4− x2dx.
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Motivation: distribution of the classical Kloosterman sums

p = 191 p = 2887

p = 18367 p = 45989

Distribution of the sums 1√
pKp(a, 1) in [−2, 2] as a varies in F×p , for several

values of p.
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The case of exponential sums

over the roots of Xd − 1



Sums over the roots of X5 − 1

Let us consider the following exponential sums∑
x∈Fp

x5=1

e

(
ax

p

)

parametrized by a ∈ Fp, for a prime number p ≡ 1 (mod 5). Which one of

the following pictures represents them?
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Sums over the roots of Xd − 1

Let us consider the following sums

Sp(a, d) :=
∑
x∈Fp

xd=1

e

(
ax

p

)

for a fixed integer d and p ≡ 1 (mod d) going to +∞. These sums were

studied in two articles of 2015:
Theorem1,2

There exists a Laurent polynomial gd : (S
1)ϕ(d) → C such that the sets of

sums {Sp(a, d); a ∈ Fp} become equidistributed in the image of gd with

respect to the pushforward measure via gd of the Haar measure on

(S1)ϕ(d), as p ≡ 1 (mod d) goes to +∞.

1William Duke, Stephan Ramon Garcia and Bob Lutz. The graphic nature of Gaussian

periods, Proc. Amer. Math. Soc. 2015.
2Stephan Ramon Garcia, Trevor Hyde and Bob Lutz. Gauss’s hidden menagerie: from

cyclotomy to supercharacters, Notices Amer. Math. Soc. 2015.
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Sums over the roots of Xd − 1

Summary of the proof

� Pick a generator wp of the unique subgroup of order d and rewrite the

sum in terms of this generator.

� Use the linear relations between powers of wp to write the sums as a

Laurent polynomial gd in fewer variables, more precisely ϕ(d).

� Show the uniform distribution of the remaining ϕ(d) variables in a

torus of dimension ϕ(d).

� Find a geometric interpretation of the image of (S1)ϕ(d) via gd. For

instance when d is prime, the image of gd is the region of the complex

plane delimited by a d-cusp hypocycloid.
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The case of exponential sums

over the roots of an arbitrary

polynomial



Modifying the previous approach

Let us rephrase the key argument of the previous case:

�

{(
e

(
awk

p

p

))
06k<ϕ(d)

; a ∈ Fp

}
become equidistributed in (S1)ϕ(d).

�

{(
e

(
awk

p

p

))
06k<d

; a ∈ Fp

}
become equidistributed in Hd ⊆ (S1)d.

� The random variable

Fp → (S1)d

a 7→
(
e

(
awk

p

p

))
06k<d

converges in law to the uniform distribution on Hd.
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Modifying the previous approach

Trying not to use the notion of primitive root, let us modify the random

variable
Fp → (S1)d

a 7→
(
e

(
awk

p

p

))
06k<d

Step 1:
Fp → C(µd(Fp),S

1)

a 7→
µd(Fp) → S1

x 7→ e
(
ax
p

)
� Advantage: we no longer use the ordering of the roots!

� Drawback: These random variables take values in a space that depends

on p.
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Modifying the previous approach

Step 2: To modify

Fp → C(µd(Fp),S
1)

a 7→
µd(Fp) → S1

x 7→ e
(
ax
p

)
let us consider

Fp → C(µd(C),S1)

a 7→
µd(C) → S1

x 7→ e
(
a$p(x)

p

)

for all ideals p of K := Q(ζd) lying above p (the condition p ≡ 1 (mod d)

ensures that OK/p ' Fp).

Conclusion: We no longer use the ordering of the roots, and our random

variables take values in the same space.
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A well suited framework

Let g ∈ Z[X] be a monic and separable polynomial. We introduce the

following notations:

� Zg is the set of complex roots of g;

� Kg := Q(Zg) its splitting field, with ring of integers Og.

� Sg is the set of prime ideals of Og with residual degree 1 and not

dividing the discriminant of g.

Definition of the unitary random variables

For all p ∈ Sg (lying above p say) we define the random variable

Up : Og/p → C(Zg,S
1)

a 7→
Zg → S1

x 7→ e
(
a$p(x)

p

)
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Convergence in law of the unitary random variables

Theorem (Kowalski–U. 2023)

As ‖p‖ goes to infinity, the random variables Up converge in law to the

uniform distribution on a certain subgroup Hg of C(Zg,S
1), orthogonal to

the Z-module of additive relations between the roots of g.

Definition (module of additive relations)

Rg :=

α : Zg → Z |
∑
x∈Zg

α(x)x = 0


Example: If Rg = {0}, then Hg = C(Zg,S

1).
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Equidistribution of exponential sums over roots

Corollary (Kowalski–U. 2023)

As p goes to infinity among the prime numbers totally split in Kg, the

sums ∑
x∈Fp

g(x)≡0 (mod p)

e

(
ax

p

)
;

become equidistributed in C with respect to a measure µg that is related

to the module of additive relations between the roots of g.

Example: If Rg = {0}, then the sums above become equidistributed with

respect ot the law of the sum of deg(g) independent Steinhaus random

variables.
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Illustration

The two pictures below represent ∑
x∈Zg(Fp)

e

(
ax

p

)
; a ∈ Fp


for two different choices of polynomial g of degree 3.

g = X3 + 2X2 + 3

p = 30113

g = X3 +X + 3

p = 30223 14



Thank you for your attention!

- Emmanuel Kowalski and Théo Untrau, Ultra-short sums of trace functions, available

on arXiv.
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