Approximation of generalized Campana points

Boaz Moerman

Utrecht University

4 July 2023

Boaz Moerman Approximation of generalized Campana points

For simplicity, we work over \mathbb{Q} and \mathbb{Z} , but the results work more generally over number fields and function fields of curves over any field. We denote $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.

Let X be a compact variety over \mathbb{Q} with integral model \mathcal{X} over \mathbb{Z} and let D_1, \ldots, D_n be divisors on X with Zariski closure $\mathcal{D}_1, \ldots, \mathcal{D}_n$. There are a lot of special subsets of rational points defined relative to these, such as

- integral points,
- Campana points and weak Campana points,
- Darmon points etc.

We introduce W-points as a common framework for these points.

For a prime p and $P \in (X \setminus D_i)(\mathbb{Q})$ we define the **multiplicity** at a divisor \mathcal{D}_i as the largest integer $N = n_p(P, \mathcal{D}_i)$ such that $P \mod p^N$ lies in $\mathcal{D}_i(\mathbb{Z}/p^N\mathbb{Z})$. If $P \in D_i(\mathbb{Q})$ we set $n_p(P, \mathcal{D}_i) = \infty$. Using this we define the multiplicity map

 $\operatorname{mult}_{p} \colon X(\mathbb{Q}_{p}) \to \overline{\mathbb{N}}^{n}$

 $P\mapsto (n_p(P,\mathcal{D}_1),\ldots,n_p(P,\mathcal{D}_n)).$

Given $\mathfrak{W} \subset \overline{\mathbb{N}}^n$ containing $\{0, \ldots, 0\}$ we set $\mathcal{W} = ((\mathcal{D}_1, \ldots, \mathcal{D}_n), \mathfrak{W})$ and we define the set of *p*-adic \mathcal{W} -points as

$$(\mathcal{X}, \mathcal{W})(\mathbb{Z}_p) = \{ P \in X \mid \mathsf{mult}_p(P) \in W \},\$$

and the set of $\mathcal W\text{-}points$ over $\mathbb Z$ as

 $(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{ P \in X \mid \mathsf{mult}_p(P) \in W \text{ for all primes } p \}.$

We take X to be a compact smooth split toric variety (such as \mathbb{P}^{n-1}), with integral model \mathcal{X} induced by the fan. We let D_1, \ldots, D_n be the torus-invariant prime divisors (on \mathbb{P}^{n-1} : coordinate hyperplanes) with ray generators $u_i \in \mathbb{Z}^d$, where $d = \dim X$. We can represent a point on $X(\mathbb{Q})$ by its Cox coordinates $P = (a_1 : \cdots : a_n)$, corresponding to the D_i , and by scaling we can assume that $a_i \in \mathbb{Z}$, and that for every prime p there exists a cone σ such that $p \nmid a_i$ for all i with $u_i \notin \sigma$. (For \mathbb{P}^{n-1} this is just $gcd(a_1, \ldots, a_n) = 1$.) Then we have

$$\mathsf{mult}_p(P) = (v_p(a_1), \dots, v_p(a_n)).$$

Examples of \mathcal{W} -points

• $\mathfrak{W} = \{0\}^k \times \overline{\mathbb{N}}^{n-k}$ gives the integral points with respect to D_1, \ldots, D_k :

$$(\mathcal{X},\mathcal{W})(\mathbb{Z}) = \{(\pm 1:\cdots:\pm 1:a_{k+1}:\cdots:a_n)\}.$$

𝔅 𝔅 = {0,1}ⁿ gives "squarefree" points
(𝔅,𝔅)(ℤ) = {(¹₁ : · · · : 𝑌ₙ): 𝑌ᵢ squarefree}.

Let
$$m_1, \ldots, m_n \in \mathbb{N} - \{0\}$$
.
• $\mathfrak{W} = \{(w_1, \ldots, w_n) \colon m_i | w_i\}$ gives the **Darmon points**

$$(\mathcal{X},\mathcal{W})(\mathbb{Z}) = \{(\pm a_1^{m_1}:\cdots:\pm a_n^{m_n})\}.$$

• $\mathfrak{W} = \{(w_1, \ldots, w_n) : w_i = 0 \text{ or } w_i \ge m_i\}$ gives the **Campana** points

$$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{(a_1 : \cdots : a_n) : a_i \ m_i \text{-full}\}.$$

We say that \mathcal{X} satisfies *(integral)* \mathcal{W} -approximation if the embedding

$$(\mathcal{X},\mathcal{W})(\mathbb{Z}) \to \prod_{p \text{ prime}} (\mathcal{X},\mathcal{W})(\mathbb{Z}_p) \times X(\mathbb{R})$$

has dense image,

and say it satisfies (integral) $\mathcal{W}\text{-approximation}$ off ∞ if the embedding

$$(\mathcal{X},\mathcal{W})(\mathbb{Z}) \to \prod_{p \text{ prime}} (\mathcal{X},\mathcal{W})(\mathbb{Z}_p)$$

has dense image. This generalizes strong approximation, which is when $(\mathcal{X}, \mathcal{W})(\mathbb{Z})$ are the integral points.

When is this satisfied? Consider the fan of X in \mathbb{Z}^d $(d = \dim X)$. Then we get a homomorphism

$$\mathbb{N}^n \to \mathbb{Z}^d$$

sending $e_i \mapsto u_i$, where u_i is the ray generator associated to D_i . (For \mathbb{P}^{n-1} we take $u_i = e_i$ if $i \leq n-1 (= d)$ and $u_n = -\sum_{i=1}^d e_i$.) Using this map, W generates a submonoid

$$N_W^+ \subset \mathbb{Z}^d$$

and a subgroup

$$N_W \subset \mathbb{Z}^d$$
.

Theorem (B.M.,2023)

- **(**) \mathcal{X} satisfies \mathcal{W} -approximation off ∞ if and only if $N_W = \mathbb{Z}^d$,
- 2 \mathcal{X} satisfies \mathcal{W} -approximation if and only if $N_W^+ = \mathbb{Z}^d$.

As N_W and N_W^+ are easy to compute, it is easy to decide whether W-approximation holds.

Corollary (B.M., 2023)

 ${\mathcal X}$ always satisfies ${\mathcal W}\text{-approximation}$ for Campana points and for squarefree points.

Corollary

Strong approximation holds off ∞ with respect to D_1, \ldots, D_k if and only if $X \setminus \bigcup_{i=1}^k D_i$ is simply connected as a complex manifold. This comes from the isomorphism

$$\mathbb{Z}^d/N_W \cong \pi_1(X \setminus \cup_{i=1}^k D_i).$$

Corollary (B.M., 2023)

 \mathcal{W} -approximation holds for Darmon points if and only if there are no (nontrivial) finite covers $Y \to X$ ramified only over the D_i with ramification multiplicity $e_i | m_i$ at the D_i . In particular: if $gcd(m_i, m_j) = 1$ for all $i \neq j$ then \mathcal{W} -approximation holds for Darmon points, and if $X = \mathbb{P}^n$ then the converse also holds.

(The above condition is equivalent to the associated root stack being simply connected.)

Example: if $X = \mathbb{P}^1$ and $m_1, m_2 = 2$, then \mathcal{X} does not satisfy \mathcal{W} -approximation, as 2 mod 5 is not of the form $\pm a^2 \mod 5$, but $(2:1) \in (\mathcal{X}, \mathcal{W})(\mathbb{Z}_5)$ as $2 \in \mathbb{Z}_5^{\times}$.

The results transfer verbatim to number fields, and after slight modification also for function fields of curves.