An extension of Euclid-Euler Theorem to certain α -perfect numbers

Gabriel Cardoso

gabriel.cardoso@ua.pt CIDMA, Department of Mathematics, University of Aveiro

3-7 July, 2023

32ÈMES JOURNÉES ARITHMÉTIQUES 2023 Joint work with Paulo J. Almeida

Gabriel Cardoso (Univ. of Aveiro)

An extension of Euclid-Euler Theorem

3-7 July, 2023

- We define σ(N) as the sum of the positive divisors of N. It is a multiplicative function;
- We say N is a perfect number if $\sigma(N) = 2N$; we say N is an α -perfect number if $\sigma(N) = \alpha N$;

- We define σ(N) as the sum of the positive divisors of N. It is a multiplicative function;
- We say N is a perfect number if $\sigma(N) = 2N$; we say N is an α -perfect number if $\sigma(N) = \alpha N$;
- We write a | b if a divides b; we write aⁿ || b if aⁿ divides b exactly, i.e., aⁿ | b and aⁿ⁺¹ does not divide b.
- We say α is a *p*-abundancy outlaw if there is no positive integer *N* such that $\sigma(N) = \alpha N$ and $p \mid N$, where *p* is a prime number.

Euclid-Euler Theorem

N is an even perfect number if and only if $N = 2^{p-1}(2^p - 1)$, where $2^p - 1$ is a Mersenne prime number.

Gabriel Cardoso (Univ. of Aveiro)

Euclid-Euler Theorem

N is an even perfect number if and only if $N = 2^{p-1}(2^p - 1)$, where $2^p - 1$ is a Mersenne prime number.

Euler's proof

Suppose $N = 2^{a}m$ and $\sigma(N) = 2N$. Then

$$2^{a+1}m = \sigma(N)(2^{a+1}-1)\sigma(m).$$

Euclid-Euler Theorem

N is an even perfect number if and only if $N = 2^{p-1}(2^p - 1)$, where $2^p - 1$ is a Mersenne prime number.

Euler's proof

Suppose $N = 2^{a}m$ and $\sigma(N) = 2N$. Then

$$2^{a+1}m = \sigma(N)(2^{a+1}-1)\sigma(m).$$

Since $gcd(2^{a+1}-1, 2^{a+1}) = 1$, then $m = k(2^{a+1}-1)$ and $\sigma(m) = k2^{a+1}$. Since k and m divide m, and $\sigma(m) = k + m$, then $2^{a+1} - 1$ is a prime number and k = 1.

3-7 July, 2023

Euclid-Euler Theorem

N is an even perfect number if and only if $N = 2^{p-1}(2^p - 1)$, where $2^p - 1$ is a Mersenne prime number.

Euler's proof

Suppose $N = 2^{a}m$ and $\sigma(N) = 2N$. Then

$$2^{a+1}m = \sigma(N)(2^{a+1}-1)\sigma(m).$$

Since $gcd(2^{a+1} - 1, 2^{a+1}) = 1$, then $m = k(2^{a+1} - 1)$ and $\sigma(m) = k2^{a+1}$. Since k and m divide m, and $\sigma(m) = k + m$, then $2^{a+1} - 1$ is a prime number and k = 1. Since $2^{a+1} - 1$ is prime number then a + 1 is a prime number p. Therefore, $N = 2^{p-1}(2^p - 1)$. Gabriel Cardoso (Univ. of Aveiro) An extension of Euclid-Euler Theorem 3-7 July 2023 3/

Gabriel Cardoso (Univ. of Aveiro)

Let α be a rational number and N > 1 be an α -perfect number.

Let α be a rational number and N > 1 be an α -perfect number.

As $\frac{\sigma(N)}{N}$ is multiplicative and $\frac{p+1}{p} \leq \frac{\sigma(p^a)}{p^a} < \frac{p}{p-1}$, then there exist positive integers r and m, prime numbers p_i , and positive integers a_i , with $1 \leq i \leq r$, such that

$$N = m \prod_{i=1}^{r} p_i^{a_i}, \tag{1}$$

3-7 July, 2023

Let α be a rational number and N > 1 be an α -perfect number.

As $\frac{\sigma(N)}{N}$ is multiplicative and $\frac{p+1}{p} \leq \frac{\sigma(p^a)}{p^a} < \frac{p}{p-1}$, then there exist positive integers r and m, prime numbers p_i , and positive integers a_i , with $1 \leq i \leq r$, such that

$$N = m \prod_{i=1}^{\prime} p_i^{a_i}, \tag{1}$$

$$\beta = \alpha \prod_{i=1}^{r} \frac{p_i - 1}{p_i} \le 1,$$
(2)

and

$$\operatorname{gcd}\left(m,\prod_{i=1}^{r}p_{i}^{a_{i}}
ight)=1.$$

Generalizing Euler's method

Therefore, and by definition,

$$\alpha m \prod_{i=1}^r p_i^{a_i} = \sigma(N) = \sigma(m) \prod_{i=1}^r \frac{p_i^{a_i+1}-1}{p_i-1}$$

프 > 프

Generalizing Euler's method

Therefore, and by definition,

$$\alpha m \prod_{i=1}^r p_i^{a_i} = \sigma(N) = \sigma(m) \prod_{i=1}^r \frac{p_i^{a_i+1}-1}{p_i-1}.$$

Consider

$$d = \gcd\left(eta \prod_{i=1}^r p_i^{a_i+1}, \prod_{i=1}^r \left(p_i^{a_i+1} - 1
ight)
ight).$$

프 > 프

Generalizing Euler's method

Therefore, and by definition,

$$\alpha m \prod_{i=1}^r p_i^{a_i} = \sigma(N) = \sigma(m) \prod_{i=1}^r \frac{p_i^{a_i+1}-1}{p_i-1}$$

Consider

$$d = \gcd\left(\beta\prod_{i=1}^r p_i^{a_i+1}, \prod_{i=1}^r \left(p_i^{a_i+1} - 1\right)\right).$$

Hence, for some integers k and d, we have

$$\sigma(m) = \frac{\beta k}{d} \prod_{i=1}^{r} p_i^{a_i+1}$$
(3)

and

$$m = \frac{k}{d} \prod_{i=1}^{r} \left(p_i^{a_i+1} - 1 \right), \tag{4}$$

Gabriel Cardoso (Univ. of Aveiro)

An extension of Euclid-Euler Theorem

3-7 July, 2023

5/21

Э

We find a lower bound for $\sigma(m)$, by summing divisors of m that are explicitly indicated in

$$m = \frac{k}{d} \prod_{i=1}^{r} \left(p_i^{a_i + 1} - 1 \right).$$
 (5)

Э

We find a lower bound for $\sigma(m)$, by summing divisors of m that are explicitly indicated in

$$m = \frac{k}{d} \prod_{i=1}^{r} \left(p_i^{a_i + 1} - 1 \right).$$
 (5)

A comparison of the lower bound with

$$\sigma(m) = \frac{\beta k}{d} \prod_{i=1}^{r} p_i^{a_i+1}$$
(6)

gave us contradictions or conditions on the form of N.

We find a lower bound for $\sigma(m)$, by summing divisors of m that are explicitly indicated in

$$m = \frac{k}{d} \prod_{i=1}^{r} \left(p_i^{a_i + 1} - 1 \right).$$
 (5)

A comparison of the lower bound with

$$\sigma(m) = \frac{\beta k}{d} \prod_{i=1}^{r} p_i^{a_i+1}$$
(6)

gave us contradictions or conditions on the form of N.

From now on, we will consider $\beta = 1$ (like Euler).

Lemma

The only solutions of the diophantine equation

$$2^a - 3^b = -1 (7)$$

are (1,1) and (3,2). Also, the only solutions of the diophantine equation

$$2^a - 3^b = 2^c - 1, (8)$$

are (2, 1, 1), (4, 2, 3), and (a, 0, a), $\forall a \in \mathbb{N} \cup \{0\}$.

Gabriel Cardoso (Univ. of Aveiro)

Lemma

The only solutions of the diophantine equation

$$2^a - 3^b = -1 (7)$$

are (1,1) and (3,2). Also, the only solutions of the diophantine equation

$$2^a - 3^b = 2^c - 1, (8)$$

are (2,1,1), (4,2,3), and (a, 0, a), $\forall a \in \mathbb{N} \cup \{0\}$.

Sketch of the proof

The first equation was solved by Mihăilescu (Catalan's conjecture).

Lemma

The only solutions of the diophantine equation

$$2^a - 3^b = -1 (7)$$

are (1,1) and (3,2). Also, the only solutions of the diophantine equation

$$2^a - 3^b = 2^c - 1, (8)$$

are (2,1,1), (4,2,3), and (a, 0, a), $\forall a \in \mathbb{N} \cup \{0\}$.

Sketch of the proof

The first equation was solved by Mihăilescu (Catalan's conjecture).

For the second equation, we take $c \ge 2$.

Lemma

The only solutions of the diophantine equation

$$2^a - 3^b = -1 (7)$$

are (1,1) and (3,2). Also, the only solutions of the diophantine equation

$$2^a - 3^b = 2^c - 1, (8)$$

are (2, 1, 1), (4, 2, 3), and (a, 0, a), $\forall a \in \mathbb{N} \cup \{0\}$.

Sketch of the proof

The first equation was solved by Mihăilescu (Catalan's conjecture).

For the second equation, we take $c \ge 2$. If c is even then $3 \mid 2^{c} - 1$. Hence $3 \mid 2^{a} - 3^{b}$. Contradiction. If c is odd then... $2^{3} \mid 3^{b} - 1$. We conclude c = 3...then (a, b) = (4, 2). Gabriel Cardoso (Univ. of Aveiro) An extension of Euclid-Euler Theorem 3-7 July, 2023 7/21

Gabriel Cardoso (Univ. of Aveiro)

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \parallel N$ and $3 \nmid N$, or $2 \nmid N$ and $3 \parallel N$.

э

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \parallel N$ and $3 \nmid N$, or $2 \nmid N$ and $3 \parallel N$.

Sketch of the proof: Let $N = 2^a 3^b m$ such that $a, b \ge 1$, gcd(6, m) = 1, and $\sigma(N) = 3N$.

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \parallel N$ and $3 \nmid N$, or $2 \nmid N$ and $3 \parallel N$.

Sketch of the proof: Let $N = 2^a 3^b m$ such that $a, b \ge 1$, gcd(6, m) = 1, and $\sigma(N) = 3N$. Then

$$3N = 2^{a} 3^{b+1}m = \sigma(N) = (2^{a+1} - 1) \frac{3^{b+1} - 1}{2} \sigma(m).$$

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \parallel N$ and $3 \nmid N$, or $2 \nmid N$ and $3 \parallel N$.

Sketch of the proof: Let $N = 2^a 3^b m$ such that $a, b \ge 1$, gcd(6, m) = 1, and $\sigma(N) = 3N$. Then

$$3N = 2^{a} 3^{b+1} m = \sigma(N) = (2^{a+1} - 1) \frac{3^{b+1} - 1}{2} \sigma(m).$$

Therefore,

$$\frac{\sigma(m)}{m} = \frac{2^{a+1} \, 3^{b+1}}{(2^{a+1}-1)(3^{b+1}-1)}.$$

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \parallel N$ and $3 \nmid N$, or $2 \nmid N$ and $3 \parallel N$.

Sketch of the proof: Let $N = 2^a 3^b m$ such that $a, b \ge 1$, gcd(6, m) = 1, and $\sigma(N) = 3N$. Then

$$3N = 2^{a} 3^{b+1} m = \sigma(N) = (2^{a+1} - 1) \frac{3^{b+1} - 1}{2} \sigma(m).$$

Therefore,

$$\frac{\sigma(m)}{m} = \frac{2^{a+1} \, 3^{b+1}}{(2^{a+1}-1)(3^{b+1}-1)}.$$

Let $d = \gcd(2^{a+1} 3^{b+1}, (2^{a+1} - 1)(3^{b+1} - 1))$. It is easy to see that $d = 2^s 3^t$, where $1 \le s \le a+1$ and $0 \le t \le b+1$.

Then, we have that

$$\sigma(m) = \frac{2^{a+1} \, 3^{b+1}}{2^s \, 3^t} k \text{ and } m = \frac{2^{a+1} - 1}{3^t} \, \frac{3^{b+1} - 1}{2^s} k,$$

for some positive integer k.

Gabriel Cardoso (Univ. of Aveiro)

∃ >

nga

Then, we have that

$$\sigma(m) = \frac{2^{a+1} \, 3^{b+1}}{2^s \, 3^t} k \text{ and } m = \frac{2^{a+1} - 1}{3^t} \, \frac{3^{b+1} - 1}{2^s} k,$$

for some positive integer k.

Let us consider the following three cases, which will establish the claim.

Case A: Suppose that $t \neq 0$.

Then, we have that

$$\sigma(m) = \frac{2^{a+1} \, 3^{b+1}}{2^s \, 3^t} k \text{ and } m = \frac{2^{a+1} - 1}{3^t} \, \frac{3^{b+1} - 1}{2^s} k,$$

for some positive integer k.

Let us consider the following three cases, which will establish the claim.

Case A: Suppose that $t \neq 0$.

Case B: Suppose that t = 0 and

$$2^{a+1} - 1 \neq \frac{3^{b+1} - 1}{2^s}.$$

Case C: Suppose that t = 0 and

$$2^{a+1} - 1 = \frac{3^{b+1} - 1}{2^s}$$

.

Gabriel Cardoso (Univ. of Aveiro)

3-7 July, 2023

Case A: Suppose that $t \neq 0$ and let

$$M = \max\left(\frac{2^{a+1}-1}{3^t}, \frac{3^{b+1}-1}{2^s}\right).$$

Then we have

$$\frac{\sigma(m)}{k} = \frac{2^{a+1}3^{b+1}}{2^s 3^t} = \dots < \frac{m}{k} + M + 1.$$

Therefore,

$$\sigma(m) < m + Mk + k. \tag{9}$$

 Case A1: $Mk \neq m$ and $M \neq 1$.

Case A2: Mk = m or M = 1.

In Case A1, we have: m, Mk and k are different divisors of m. Thus,

$$\sigma(m) \ge m + Mk + k. \tag{10}$$

By combination of inequalities (9) and (10), we have a contradiction.

In Case A2, we have:

$$\frac{2^{a+1}-1}{3^t} = 1 \text{ or } \frac{3^{b+1}-1}{2^s} = 1.$$

Therefore, $2^{a+1} - 3^t = 1$ or $3^{b+1} - 2^s = 1$. We have a = 1 or b = 1 (by the solutions of the diophantine equations presented before).

In Case A2, we have:

$$\frac{2^{a+1}-1}{3^t} = 1 \text{ or } \frac{3^{b+1}-1}{2^s} = 1.$$

Therefore, $2^{a+1} - 3^t = 1$ or $3^{b+1} - 2^s = 1$. We have a = 1 or b = 1 (by the solutions of the diophantine equations presented before). *Case B:* Suppose that t = 0 and

$$2^{a+1} - 1 \neq \frac{3^{b+1} - 1}{2^s}$$

In Case A2, we have:

$$\frac{2^{a+1}-1}{3^t} = 1 \text{ or } \frac{3^{b+1}-1}{2^s} = 1.$$

Therefore, $2^{a+1} - 3^t = 1$ or $3^{b+1} - 2^s = 1$. We have a = 1 or b = 1 (by the solutions of the diophantine equations presented before). *Case B:* Suppose that t = 0 and

$$2^{s+1} - 1 \neq \frac{3^{b+1} - 1}{2^s}$$

Let

$$M' = \min\left(2^{a+1} - 1, \frac{3^{b+1} - 1}{2^s}\right).$$

Case B1: M' = 1. Case B2: $M' \neq 1$.

Gabriel Cardoso (Univ. of Aveiro)

< 17 < <

Ξ

Case B1: M' = 1. Case B2: $M' \neq 1$.

Case B1: Since M' = 1 then

$$2^{a+1} - 1 = 1$$
 or $\frac{3^{b+1} - 1}{2^s} = 1$.

47 ▶

< ∃ >

Э

Case B1: M' = 1. Case B2: $M' \neq 1$.

Case B1: Since M' = 1 then

$$2^{a+1} - 1 = 1$$
 or $\frac{3^{b+1} - 1}{2^s} = 1$.

Therefore, $2^{a+1} = 2$ or $3^{b+1} - 2^s = 1$. As $a, b \ge 1$, we conclude that b = 1 (Catalan's conjecture!).

3-perfect numbers divisible by 6

Case B1: M' = 1. Case B2: $M' \neq 1$.

Case B1: Since M' = 1 then

$$2^{s+1} - 1 = 1$$
 or $\frac{3^{b+1} - 1}{2^s} = 1$.

Therefore, $2^{a+1} = 2$ or $3^{b+1} - 2^s = 1$. As $a, b \ge 1$, we conclude that b = 1 (Catalan's conjecture!).

Case B2: Since $M' \neq 1$ then

$$m, (2^{a+1}-1)k, \frac{3^{b+1}-1}{2^s}k, \text{ and } k,$$

are different divisors of m.

3-perfect numbers divisible by 6

Case B1: M' = 1. Case B2: $M' \neq 1$.

Case B1: Since M' = 1 then

$$2^{a+1} - 1 = 1$$
 or $\frac{3^{b+1} - 1}{2^s} = 1$.

Therefore, $2^{a+1} = 2$ or $3^{b+1} - 2^s = 1$. As $a, b \ge 1$, we conclude that b = 1 (Catalan's conjecture!).

Case B2: Since $M' \neq 1$ then

$$m, (2^{a+1}-1)k, \frac{3^{b+1}-1}{2^s}k, \text{ and } k,$$

are different divisors of m. Therefore,

$$\sigma(m) \ge m + (2^{a+1} - 1)k + \frac{3^{b+1} - 1}{2^s}k + k > \dots = \sigma(m).$$

We obtain a contradiction.

Gabriel Cardoso (Univ. of Aveiro)

3-7 July, 2023

3-perfect numbers divisible by 6

Case C: Suppose that t = 0 and

$$2^{a+1} - 1 = \frac{3^{b+1} - 1}{2^s}$$

Then $2^{a+1+s} - 3^{b+1} = 2^s - 1$.

▶ < ∃ ▶</p>

Э

14 / 21

Case C: Suppose that t = 0 and

$$2^{a+1} - 1 = \frac{3^{b+1} - 1}{2^s}.$$

Then $2^{a+1+s} - 3^{b+1} = 2^s - 1$.

We have $(a, b) \in \{(0, 0), (0, 1)\}$ (by the solutions of the diophantine equations presented before).

Since $a, b \ge 1$ we obtain a contradiction.

Case C: Suppose that t = 0 and

$$2^{a+1} - 1 = \frac{3^{b+1} - 1}{2^s}.$$

Then $2^{a+1+s} - 3^{b+1} = 2^s - 1$.

We have $(a, b) \in \{(0, 0), (0, 1)\}$ (by the solutions of the diophantine equations presented before). Since $a, b \ge 1$ we obtain a contradiction.

Hence, we must have a = 1 or b = 1. But...just one of them. Why? Black board, please!

Differences between powers of 2 and F_n known prime

Lemma

Let F_n be the *n*-th Fermat number and consider the following exponential diophantine equations

$$2^{a} - F_{n}^{b} = -1 \tag{11}$$

and

$$2^{a} - F_{n}^{b} = 2^{c} - 1. (12)$$

Differences between powers of 2 and F_n known prime

Lemma

Let F_n be the *n*-th Fermat number and consider the following exponential diophantine equations

$$2^{a} - F_{n}^{b} = -1 \tag{11}$$

and

$$2^{a} - F_{n}^{b} = 2^{c} - 1.$$
 (12)

Then

(a) when $n \in \{1, 2, 3, 4\}$, Equation (11) only holds for $(a, b) = (2^n, 1)$; (b) when $n \in \{2, 3, 4\}$, Equation (12) only holds for

$$(a,b,c) \in \{(a,0,a) \mid a \in \mathbb{Z}\} \cup \{(2^n+1,1,2^n)\};$$

Gabriel Cardoso (Univ. of Aveiro)

Differences between powers of 2 and F_n known prime

Lemma

Let F_n be the *n*-th Fermat number and consider the following exponential diophantine equations

$$2^{a} - F_{n}^{b} = -1 \tag{11}$$

and

$$2^{a} - F_{n}^{b} = 2^{c} - 1.$$
 (12)

Then

(a) when $n \in \{1, 2, 3, 4\}$, Equation (11) only holds for $(a, b) = (2^n, 1)$; (b) when $n \in \{2, 3, 4\}$, Equation (12) only holds for

$$(a,b,c) \in \{(a,0,a) \mid a \in \mathbb{Z}\} \cup \{(2^n+1,1,2^n)\};$$

(c) when n = 1, Equation (12) only holds for

 $(a, b, c) \in \{(a, 0, a) \mid a \in \mathbb{Z}\} \cup \{(3, 1, 2), (7, 3, 2), (5, 2, 3)\}.$

Theorem

Let F_n be the n-th Fermat number. Then

- if exists N such that $\frac{\sigma(N)}{N} = \frac{F_1}{2}$ and $F_1 \mid N$, then $2^4 \parallel N, F_1^2 \parallel N$, and $31^2 \mid N$.
- **2** if $n \in \{2,3,4\}$ then $\frac{2F_n}{F_n-1}$ is a F_n -abundancy outlaw.

Theorem

Let F_n be the n-th Fermat number. Then

- if exists N such that $\frac{\sigma(N)}{N} = \frac{F_1}{2}$ and $F_1 \mid N$, then $2^4 \parallel N, F_1^2 \parallel N$, and $31^2 \mid N$.
- **2** if $n \in \{2,3,4\}$ then $\frac{2F_n}{F_n-1}$ is a F_n -abundancy outlaw.

Sketch of the proof: Let $n \in \{1, 2, 3, 4\}$ and $F_n = 2^{2^n} + 1$. We can write $\overline{N} = 2^a F_n^b m$ such that $a, b \ge 1$, $gcd(2F_n, m) = 1$, and

$$\sigma(N)=\frac{2F_n}{F_n-1}N.$$

Then

$$\frac{\sigma(m)}{m} = \frac{2^{a+1} F_n^{b+1}}{(2^{a+1}-1)(F_n^{b+1}-1)}.$$

Gabriel Cardoso (Univ. of Aveiro)

An extension of Euclid-Euler Theorem

3-7 July, 2023

Let

$$d = \gcd\left(2^{a+1} F_n^{b+1}, (2^{a+1}-1)(F_n^{b+1}-1)\right).$$

As $F_n - 1 | F_n^{b+1} - 1$, then $d = 2^s F_n^t$, where $2^n \le s \le a + 1$ and $0 \le t \le b + 1$...(similar to 3-perfect, but trickier)...

17/21

Let

$$d = \gcd\left(2^{a+1} F_n^{b+1}, (2^{a+1}-1)(F_n^{b+1}-1)\right).$$

As $F_n - 1 | F_n^{b+1} - 1$, then $d = 2^s F_n^t$, where $2^n \le s \le a + 1$ and $0 \le t \le b + 1$...(similar to 3-perfect, but trickier)...

We will have

 $(F_n, a, b, s) \in \{(5, -1, -1, 1), (5, 0, 0, 2), (5, 1, 1, 3), (5, 4, 2, 2), (17, 0, 0, 4), (257, 0, 0, 8), (65537, 0, 0, 16)\}.$

Since $a, b \ge 1$, we only have solutions for $F_n = 5$ and then $(F_n, a, b) = (5, 1, 1)$ or $(F_n, a, b) = (5, 4, 2)$.

< ⊒ >

э

Since $a, b \ge 1$, we only have solutions for $F_n = 5$ and then $(F_n, a, b) = (5, 1, 1)$ or $(F_n, a, b) = (5, 4, 2)$.

If $(F_n, a, b) = (5, 1, 1)$ then

$$\frac{\sigma(N)}{N} = \frac{5}{2} = \frac{3}{2} \cdot \frac{6}{5} \cdot \frac{\sigma(m)}{m}$$

Therefore, $9 \mid m$.

Gabriel Cardoso (Univ. of Aveiro)

Э

Since $a, b \ge 1$, we only have solutions for $F_n = 5$ and then $(F_n, a, b) = (5, 1, 1)$ or $(F_n, a, b) = (5, 4, 2)$.

If $(F_n, a, b) = (5, 1, 1)$ then

$$\frac{\sigma(N)}{N} = \frac{5}{2} = \frac{3}{2} \cdot \frac{6}{5} \cdot \frac{\sigma(m)}{m}$$

Therefore, $9 \mid m$. But then,

$$\frac{\sigma(N)}{N} = \frac{5}{2} \ge \frac{3}{2} \cdot \frac{6}{5} \cdot \frac{13}{9} > \frac{5}{2}.$$

We have a contradiction.

Since $a, b \ge 1$, we only have solutions for $F_n = 5$ and then $(F_n, a, b) = (5, 1, 1)$ or $(F_n, a, b) = (5, 4, 2)$.

If $(F_n, a, b) = (5, 1, 1)$ then

$$\frac{\sigma(N)}{N} = \frac{5}{2} = \frac{3}{2} \cdot \frac{6}{5} \cdot \frac{\sigma(m)}{m}$$

Therefore, $9 \mid m$. But then,

$$\frac{\sigma(N)}{N} = \frac{5}{2} \ge \frac{3}{2} \cdot \frac{6}{5} \cdot \frac{13}{9} > \frac{5}{2}.$$

We have a contradiction.

Hence,
$$(F_n, a, b) = (5, 4, 2)$$
 and so $31^2 | N$.

L. E. Dickson, *History of the Theory of Numbers, Volume I: Divisibility and Primality*, Chelsea Publishing Company, 1919.

L. Euler, *Commentationes Arithmeticae Collectae*, Vol. 2, Imperial Academy of Sciences, St. Petersburg, 1849.

A. Flammenkamp, The multiply perfect numbers page, http://wwwhomes.uni-bielefeld.de/achim/mpn.html, 2022.

R. K. Guy, C. B. Lacampagne, and J. L. Selfridge, Primes at a glance, *Math. Comp.* **48** (1987), 183–202.

J. A. Holdener and W. G. Stanton, Abundancy "outlaws" of the form $(\sigma(N) + t)/N$, J. Integer Sequences **10** (2007), Article 07.9.6.

P. Mihǎilescu, Primary cyclotomic units and a proof of catalans conjecture, J. Reine Angew. Math. 2004 (2004), 167–195.

R. Ryan, A simpler dense proof regarding the abundancy index, *Math. Mag.* **76** (2003), 299–301.

R. Scott, On the equations $p^x - b^y = c$ and $a^x + b^y = c^z$, J. Number Theory 44 (1993), 153–165.

R. Steuerwald, Ein Satz über natürliche Zahlen N mit $\sigma(N) = 3N$, Arch. Math. (Basel) **5** (1954), 449–451.

R. Styer, Small two-variable exponential diophantine equations, *Math. Comp.* **60** (1993), 811–816.

P. Weiner, The abundancy ratio, a measure of perfection, *Math. Mag.* **73** (2000), 307–310.

3

イロト イ理ト イヨト イヨト

Thank you for your attention.

This work is supported by Fundação para a Ciência e a Tecnologia (FCT) via PhD Scholarship PD/BD/150533/2019.

Gabriel Cardoso (Univ. of Aveiro)

An extension of Euclid-Euler Theorem

3-7 July, 2023