An extension of Euclid-Euler Theorem to certain α-perfect numbers

Gabriel Cardoso
gabriel.cardoso@ua.pt
CIDMA, Department of Mathematics, University of Aveiro
3-7 July, 2023
32Èmes Journées Arithmétiques 2023
Joint work with Paulo J. Almeida

Concepts and notation

(1) We define $\sigma(N)$ as the sum of the positive divisors of N. It is a multiplicative function;
(2) We say N is a perfect number if $\sigma(N)=2 N$; we say N is an α-perfect number if $\sigma(N)=\alpha N$;

Concepts and notation

(1) We define $\sigma(N)$ as the sum of the positive divisors of N. It is a multiplicative function;
(2) We say N is a perfect number if $\sigma(N)=2 N$; we say N is an α-perfect number if $\sigma(N)=\alpha N$;
(3) We write $a \mid b$ if a divides b; we write $a^{n} \| b$ if a^{n} divides b exactly, i.e., $a^{n} \mid b$ and a^{n+1} does not divide b.
(9) We say α is a p-abundancy outlaw if there is no positive integer N such that $\sigma(N)=\alpha N$ and $p \mid N$, where p is a prime number.

Motivation

Euclid-Euler Theorem

N is an even perfect number if and only if $N=2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is a Mersenne prime number.

Motivation

Euclid-Euler Theorem

N is an even perfect number if and only if $N=2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is a Mersenne prime number.

Euler's proof

Suppose $N=2^{a} m$ and $\sigma(N)=2 N$. Then

$$
2^{a+1} m=\sigma(N)\left(2^{a+1}-1\right) \sigma(m)
$$

Motivation

Euclid-Euler Theorem

N is an even perfect number if and only if $N=2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is a Mersenne prime number.

Euler's proof

Suppose $N=2^{a} m$ and $\sigma(N)=2 N$. Then

$$
2^{a+1} m=\sigma(N)\left(2^{a+1}-1\right) \sigma(m)
$$

Since $\operatorname{gcd}\left(2^{a+1}-1,2^{a+1}\right)=1$, then $m=k\left(2^{a+1}-1\right)$ and $\sigma(m)=k 2^{a+1}$.
Since k and m divide m, and $\sigma(m)=k+m$, then $2^{a+1}-1$ is a prime number and $k=1$.

Motivation

Euclid-Euler Theorem

N is an even perfect number if and only if $N=2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is a Mersenne prime number.

Euler's proof

Suppose $N=2^{a} m$ and $\sigma(N)=2 N$. Then

$$
2^{a+1} m=\sigma(N)\left(2^{a+1}-1\right) \sigma(m)
$$

Since $\operatorname{gcd}\left(2^{a+1}-1,2^{a+1}\right)=1$, then $m=k\left(2^{a+1}-1\right)$ and $\sigma(m)=k 2^{a+1}$.
Since k and m divide m, and $\sigma(m)=k+m$, then $2^{a+1}-1$ is a prime number and $k=1$.
Since $2^{a+1}-1$ is prime number then $a+1$ is a prime number p.
Therefore, $N=2^{p-1}\left(2^{p}-1\right)$.

Generalizing Euler's method

Let α be a rational number and $N>1$ be an α-perfect number.

Generalizing Euler's method

Let α be a rational number and $N>1$ be an α-perfect number.

As $\frac{\sigma(N)}{N}$ is multiplicative and $\frac{p+1}{p} \leq \frac{\sigma\left(p^{a}\right)}{p^{a}}<\frac{p}{p-1}$, then there exist positive integers r and m, prime numbers p_{i}, and positive integers a_{i}, with $1 \leq i \leq r$, such that

$$
\begin{equation*}
N=m \prod_{i=1}^{r} p_{i}^{a_{i}} \tag{1}
\end{equation*}
$$

Generalizing Euler's method

Let α be a rational number and $N>1$ be an α-perfect number.

As $\frac{\sigma(N)}{N}$ is multiplicative and $\frac{p+1}{p} \leq \frac{\sigma\left(p^{a}\right)}{p^{a}}<\frac{p}{p-1}$, then there exist positive integers r and m, prime numbers p_{i}, and positive integers a_{i}, with $1 \leq i \leq r$, such that

$$
\begin{gather*}
N=m \prod_{i=1}^{r} p_{i}^{a_{i}} \tag{1}\\
\beta=\alpha \prod_{i=1}^{r} \frac{p_{i}-1}{p_{i}} \leq 1 \tag{2}
\end{gather*}
$$

and

$$
\operatorname{gcd}\left(m, \prod_{i=1}^{r} p_{i}^{a_{i}}\right)=1
$$

Generalizing Euler's method

Therefore, and by definition,

$$
\alpha m \prod_{i=1}^{r} p_{i}^{a_{i}}=\sigma(N)=\sigma(m) \prod_{i=1}^{r} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} .
$$

Generalizing Euler's method

Therefore, and by definition,

$$
\alpha m \prod_{i=1}^{r} p_{i}^{a_{i}}=\sigma(N)=\sigma(m) \prod_{i=1}^{r} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} .
$$

Consider

$$
d=\operatorname{gcd}\left(\beta \prod_{i=1}^{r} p_{i}^{a_{i}+1}, \prod_{i=1}^{r}\left(p_{i}^{a_{i}+1}-1\right)\right)
$$

Generalizing Euler's method

Therefore, and by definition,

$$
\alpha m \prod_{i=1}^{r} p_{i}^{a_{i}}=\sigma(N)=\sigma(m) \prod_{i=1}^{r} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} .
$$

Consider

$$
d=\operatorname{gcd}\left(\beta \prod_{i=1}^{r} p_{i}^{a_{i}+1}, \prod_{i=1}^{r}\left(p_{i}^{a_{i}+1}-1\right)\right)
$$

Hence, for some integers k and d, we have

$$
\begin{equation*}
\sigma(m)=\frac{\beta k}{d} \prod_{i=1}^{r} p_{i}^{a_{i}+1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
m=\frac{k}{d} \prod_{i=1}^{r}\left(p_{i}^{a_{i}+1}-1\right) \tag{4}
\end{equation*}
$$

Generalizing Euler's method

We find a lower bound for $\sigma(m)$, by summing divisors of m that are explicitly indicated in

$$
\begin{equation*}
m=\frac{k}{d} \prod_{i=1}^{r}\left(p_{i}^{a_{i}+1}-1\right) \tag{5}
\end{equation*}
$$

Generalizing Euler's method

We find a lower bound for $\sigma(m)$, by summing divisors of m that are explicitly indicated in

$$
\begin{equation*}
m=\frac{k}{d} \prod_{i=1}^{r}\left(p_{i}^{a_{i}+1}-1\right) \tag{5}
\end{equation*}
$$

A comparison of the lower bound with

$$
\begin{equation*}
\sigma(m)=\frac{\beta k}{d} \prod_{i=1}^{r} p_{i}^{a_{i}+1} \tag{6}
\end{equation*}
$$

gave us contradictions or conditions on the form of N.

Generalizing Euler's method

We find a lower bound for $\sigma(m)$, by summing divisors of m that are explicitly indicated in

$$
\begin{equation*}
m=\frac{k}{d} \prod_{i=1}^{r}\left(p_{i}^{a_{i}+1}-1\right) \tag{5}
\end{equation*}
$$

A comparison of the lower bound with

$$
\begin{equation*}
\sigma(m)=\frac{\beta k}{d} \prod_{i=1}^{r} p_{i}^{a_{i}+1} \tag{6}
\end{equation*}
$$

gave us contradictions or conditions on the form of N.
From now on, we will consider $\beta=1$ (like Euler).

Differences between powers of 2 and 3

Lemma

The only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=-1 \tag{7}
\end{equation*}
$$

are $(1,1)$ and $(3,2)$. Also, the only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=2^{c}-1 \tag{8}
\end{equation*}
$$

are $(2,1,1),(4,2,3)$, and $(a, 0, a), \forall a \in \mathbb{N} \cup\{0\}$.

Differences between powers of 2 and 3

Lemma

The only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=-1 \tag{7}
\end{equation*}
$$

are $(1,1)$ and $(3,2)$. Also, the only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=2^{c}-1 \tag{8}
\end{equation*}
$$

are $(2,1,1),(4,2,3)$, and $(a, 0, a), \forall a \in \mathbb{N} \cup\{0\}$.

Sketch of the proof

The first equation was solved by Mihăilescu (Catalan's conjecture).

Differences between powers of 2 and 3

Lemma

The only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=-1 \tag{7}
\end{equation*}
$$

are $(1,1)$ and $(3,2)$. Also, the only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=2^{c}-1 \tag{8}
\end{equation*}
$$

are $(2,1,1),(4,2,3)$, and $(a, 0, a), \forall a \in \mathbb{N} \cup\{0\}$.

Sketch of the proof

The first equation was solved by Mihăilescu (Catalan's conjecture).
For the second equation, we take $c \geq 2$.

Differences between powers of 2 and 3

Lemma

The only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=-1 \tag{7}
\end{equation*}
$$

are $(1,1)$ and $(3,2)$. Also, the only solutions of the diophantine equation

$$
\begin{equation*}
2^{a}-3^{b}=2^{c}-1 \tag{8}
\end{equation*}
$$

are $(2,1,1),(4,2,3)$, and $(a, 0, a), \forall a \in \mathbb{N} \cup\{0\}$.

Sketch of the proof

The first equation was solved by Mihăilescu (Catalan's conjecture).
For the second equation, we take $c \geq 2$.
If c is even then $3 \mid 2^{c}-1$. Hence $3 \mid 2^{a}-3^{b}$. Contradiction.
If c is odd then $\ldots 2^{3} \| 3^{b}-1$. We conclude $c=3 \ldots$ then $(a, b)=(4,2)$.

3-perfect numbers divisible by 6

Theorem

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \| N$ and $3 \nVdash N$, or $2 \nmid N$ and $3 \| N$.

3-perfect numbers divisible by 6

Theorem

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \| N$ and $3 \nVdash N$, or $2 \nmid N$ and $3 \| N$.

Sketch of the proof: Let $N=2^{a} 3^{b} m$ such that $a, b \geq 1, \operatorname{gcd}(6, m)=1$, and $\sigma(N)=3 N$.

3-perfect numbers divisible by 6

Theorem

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \| N$ and $3 \nVdash N$, or $2 \nmid N$ and $3 \| N$.

Sketch of the proof: Let $N=2^{a} 3^{b} m$ such that $a, b \geq 1, \operatorname{gcd}(6, m)=1$, and $\sigma(N)=3 N$.
Then

$$
3 N=2^{a} 3^{b+1} m=\sigma(N)=\left(2^{a+1}-1\right) \frac{3^{b+1}-1}{2} \sigma(m)
$$

3-perfect numbers divisible by 6

Theorem

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \| N$ and $3 \nVdash N$, or $2 \nmid N$ and $3 \| N$.

Sketch of the proof: Let $N=2^{a} 3^{b} m$ such that $a, b \geq 1, \operatorname{gcd}(6, m)=1$, and $\sigma(N)=3 N$.
Then

$$
3 N=2^{a} 3^{b+1} m=\sigma(N)=\left(2^{a+1}-1\right) \frac{3^{b+1}-1}{2} \sigma(m)
$$

Therefore,

$$
\frac{\sigma(m)}{m}=\frac{2^{a+1} 3^{b+1}}{\left(2^{a+1}-1\right)\left(3^{b+1}-1\right)}
$$

3-perfect numbers divisible by 6

Theorem

Suppose N is a 3-perfect number and $6 \mid N$. Hence $2 \| N$ and $3 \nVdash N$, or $2 \nmid N$ and $3 \| N$.

Sketch of the proof: Let $N=2^{a} 3^{b} m$ such that $a, b \geq 1, \operatorname{gcd}(6, m)=1$, and $\sigma(N)=3 N$.
Then

$$
3 N=2^{a} 3^{b+1} m=\sigma(N)=\left(2^{a+1}-1\right) \frac{3^{b+1}-1}{2} \sigma(m)
$$

Therefore,

$$
\frac{\sigma(m)}{m}=\frac{2^{a+1} 3^{b+1}}{\left(2^{a+1}-1\right)\left(3^{b+1}-1\right)}
$$

Let $d=\operatorname{gcd}\left(2^{a+1} 3^{b+1},\left(2^{a+1}-1\right)\left(3^{b+1}-1\right)\right)$. It is easy to see that $d=2^{s} 3^{t}$, where $1 \leq s \leq a+1$ and $0 \leq t \leq b+1$.

3-perfect numbers divisible by 6

Then, we have that

$$
\sigma(m)=\frac{2^{a+1} 3^{b+1}}{2^{s} 3^{t}} k \text { and } m=\frac{2^{a+1}-1}{3^{t}} \frac{3^{b+1}-1}{2^{s}} k
$$

for some positive integer k.

3-perfect numbers divisible by 6

Then, we have that

$$
\sigma(m)=\frac{2^{a+1} 3^{b+1}}{2^{s} 3^{t}} k \text { and } m=\frac{2^{a+1}-1}{3^{t}} \frac{3^{b+1}-1}{2^{s}} k,
$$

for some positive integer k.
Let us consider the following three cases, which will establish the claim.
Case A : Suppose that $t \neq 0$.

3-perfect numbers divisible by 6

Then, we have that

$$
\sigma(m)=\frac{2^{a+1} 3^{b+1}}{2^{s} 3^{t}} k \text { and } m=\frac{2^{a+1}-1}{3^{t}} \frac{3^{b+1}-1}{2^{s}} k
$$

for some positive integer k.
Let us consider the following three cases, which will establish the claim.
Case A : Suppose that $t \neq 0$.
Case B: Suppose that $t=0$ and

$$
2^{a+1}-1 \neq \frac{3^{b+1}-1}{2^{s}}
$$

Case C: Suppose that $t=0$ and

$$
2^{a+1}-1=\frac{3^{b+1}-1}{2^{s}}
$$

3-perfect numbers divisible by 6

Case A: Suppose that $t \neq 0$ and let

$$
M=\max \left(\frac{2^{a+1}-1}{3^{t}}, \frac{3^{b+1}-1}{2^{s}}\right) .
$$

Then we have

$$
\frac{\sigma(m)}{k}=\frac{2^{a+1} 3^{b+1}}{2^{s} 3^{t}}=\ldots<\frac{m}{k}+M+1
$$

Therefore,

$$
\begin{equation*}
\sigma(m)<m+M k+k \tag{9}
\end{equation*}
$$

3-perfect numbers divisible by 6

Case A1: $M k \neq m$ and $M \neq 1$.
Case A2: $M k=m$ or $M=1$.
In Case A1, we have: $m, M k$ and k are different divisors of m. Thus,

$$
\begin{equation*}
\sigma(m) \geq m+M k+k \tag{10}
\end{equation*}
$$

By combination of inequalities (9) and (10), we have a contradiction.

3-perfect numbers divisible by 6

In Case A2, we have:

$$
\frac{2^{a+1}-1}{3^{t}}=1 \text { or } \frac{3^{b+1}-1}{2^{s}}=1
$$

Therefore, $2^{a+1}-3^{t}=1$ or $3^{b+1}-2^{s}=1$. We have $a=1$ or $b=1$ (by the solutions of the diophantine equations presented before).

3-perfect numbers divisible by 6

In Case A2, we have:

$$
\frac{2^{a+1}-1}{3^{t}}=1 \text { or } \frac{3^{b+1}-1}{2^{s}}=1
$$

Therefore, $2^{a+1}-3^{t}=1$ or $3^{b+1}-2^{s}=1$. We have $a=1$ or $b=1$ (by the solutions of the diophantine equations presented before).
Case B: Suppose that $t=0$ and

$$
2^{a+1}-1 \neq \frac{3^{b+1}-1}{2^{s}}
$$

3-perfect numbers divisible by 6

In Case A2, we have:

$$
\frac{2^{a+1}-1}{3^{t}}=1 \text { or } \frac{3^{b+1}-1}{2^{s}}=1
$$

Therefore, $2^{a+1}-3^{t}=1$ or $3^{b+1}-2^{s}=1$. We have $a=1$ or $b=1$ (by the solutions of the diophantine equations presented before).
Case B: Suppose that $t=0$ and

$$
2^{a+1}-1 \neq \frac{3^{b+1}-1}{2^{s}}
$$

Let

$$
M^{\prime}=\min \left(2^{a+1}-1, \frac{3^{b+1}-1}{2^{s}}\right) .
$$

3-perfect numbers divisible by 6

Case B1: $M^{\prime}=1$. Case B2: $M^{\prime} \neq 1$.

3-perfect numbers divisible by 6

Case B1: $M^{\prime}=1$.
Case B2: $M^{\prime} \neq 1$.
Case B1: Since $M^{\prime}=1$ then

$$
2^{a+1}-1=1 \text { or } \frac{3^{b+1}-1}{2^{s}}=1
$$

3-perfect numbers divisible by 6

Case B1: $M^{\prime}=1$.
Case B2: $M^{\prime} \neq 1$.
Case B1: Since $M^{\prime}=1$ then

$$
2^{a+1}-1=1 \text { or } \frac{3^{b+1}-1}{2^{s}}=1
$$

Therefore, $2^{a+1}=2$ or $3^{b+1}-2^{s}=1$. As $a, b \geq 1$, we conclude that $b=1$ (Catalan's conjecture!).

3-perfect numbers divisible by 6

Case B1: $M^{\prime}=1$.
Case B2: $M^{\prime} \neq 1$.
Case B1: Since $M^{\prime}=1$ then

$$
2^{a+1}-1=1 \text { or } \frac{3^{b+1}-1}{2^{s}}=1
$$

Therefore, $2^{a+1}=2$ or $3^{b+1}-2^{s}=1$. As $a, b \geq 1$, we conclude that $b=1$ (Catalan's conjecture!).

Case B2: Since $M^{\prime} \neq 1$ then

$$
m,\left(2^{a+1}-1\right) k, \frac{3^{b+1}-1}{2^{s}} k, \text { and } k
$$

are different divisors of m.

3-perfect numbers divisible by 6

Case B1: $M^{\prime}=1$.
Case B2: $M^{\prime} \neq 1$.
Case B1: Since $M^{\prime}=1$ then

$$
2^{a+1}-1=1 \text { or } \frac{3^{b+1}-1}{2^{s}}=1
$$

Therefore, $2^{a+1}=2$ or $3^{b+1}-2^{s}=1$. As $a, b \geq 1$, we conclude that $b=1$ (Catalan's conjecture!).

Case B2: Since $M^{\prime} \neq 1$ then

$$
m,\left(2^{a+1}-1\right) k, \frac{3^{b+1}-1}{2^{s}} k, \text { and } k
$$

are different divisors of m. Therefore,

$$
\sigma(m) \geq m+\left(2^{a+1}-1\right) k+\frac{3^{b+1}-1}{2^{s}} k+k>\ldots=\sigma(m) .
$$

We obtain a contradiction.

3-perfect numbers divisible by 6

Case C: Suppose that $t=0$ and

$$
2^{a+1}-1=\frac{3^{b+1}-1}{2^{s}}
$$

Then $2^{a+1+s}-3^{b+1}=2^{s}-1$.

3-perfect numbers divisible by 6

Case C: Suppose that $t=0$ and

$$
2^{a+1}-1=\frac{3^{b+1}-1}{2^{s}}
$$

Then $2^{a+1+s}-3^{b+1}=2^{s}-1$.
We have $(a, b) \in\{(0,0),(0,1)\}$ (by the solutions of the diophantine equations presented before).
Since $a, b \geq 1$ we obtain a contradiction.

3-perfect numbers divisible by 6

Case C: Suppose that $t=0$ and

$$
2^{a+1}-1=\frac{3^{b+1}-1}{2^{s}}
$$

Then $2^{a+1+s}-3^{b+1}=2^{s}-1$.
We have $(a, b) \in\{(0,0),(0,1)\}$ (by the solutions of the diophantine equations presented before).
Since $a, b \geq 1$ we obtain a contradiction.
Hence, we must have $a=1$ or $b=1$.
But...just one of them. Why? Black board, please!

Differences between powers of 2 and F_{n} known prime

Lemma

Let F_{n} be the n-th Fermat number and consider the following exponential diophantine equations

$$
\begin{equation*}
2^{a}-F_{n}^{b}=-1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{a}-F_{n}^{b}=2^{c}-1 . \tag{12}
\end{equation*}
$$

Differences between powers of 2 and F_{n} known prime

Lemma

Let F_{n} be the n-th Fermat number and consider the following exponential diophantine equations

$$
\begin{equation*}
2^{a}-F_{n}^{b}=-1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{a}-F_{n}^{b}=2^{c}-1 . \tag{12}
\end{equation*}
$$

Then
(a) when $n \in\{1,2,3,4\}$, Equation (11) only holds for $(a, b)=\left(2^{n}, 1\right)$;
(b) when $n \in\{2,3,4\}$, Equation (12) only holds for

$$
(a, b, c) \in\{(a, 0, a) \mid a \in \mathbb{Z}\} \cup\left\{\left(2^{n}+1,1,2^{n}\right)\right\} ;
$$

Differences between powers of 2 and F_{n} known prime

Lemma

Let F_{n} be the n-th Fermat number and consider the following exponential diophantine equations

$$
\begin{equation*}
2^{a}-F_{n}^{b}=-1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{a}-F_{n}^{b}=2^{c}-1 . \tag{12}
\end{equation*}
$$

Then
(a) when $n \in\{1,2,3,4\}$, Equation (11) only holds for $(a, b)=\left(2^{n}, 1\right)$;
(b) when $n \in\{2,3,4\}$, Equation (12) only holds for

$$
(a, b, c) \in\{(a, 0, a) \mid a \in \mathbb{Z}\} \cup\left\{\left(2^{n}+1,1,2^{n}\right)\right\} ;
$$

(c) when $n=1$, Equation (12) only holds for

$$
(a, b, c) \in\{(a, 0, a) \mid a \in \mathbb{Z}\} \cup\{(3,1,2),(7,3,2),(5,2,3)\}
$$

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Theorem

Let F_{n} be the n-th Fermat number. Then
(1) if exists N such that $\frac{\sigma(N)}{N}=\frac{F_{1}}{2}$ and $F_{1} \mid N$, then $2^{4}\left\|N, F_{1}^{2}\right\| N$, and $31^{2} \mid N$.
(2) if $n \in\{2,3,4\}$ then $\frac{2 F_{n}}{F_{n}-1}$ is a F_{n}-abundancy outlaw.

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Theorem

Let F_{n} be the n-th Fermat number. Then
(1) if exists N such that $\frac{\sigma(N)}{N}=\frac{F_{1}}{2}$ and $F_{1} \mid N$, then $2^{4}\left\|N, F_{1}^{2}\right\| N$, and $31^{2} \mid N$.
(2) if $n \in\{2,3,4\}$ then $\frac{2 F_{n}}{F_{n}-1}$ is a F_{n}-abundancy outlaw.

Sketch of the proof: Let $n \in\{1,2,3,4\}$ and $F_{n}=2^{2^{n}}+1$. We can write $N=2^{a} F_{n}^{b} m$ such that $a, b \geq 1, \operatorname{gcd}\left(2 F_{n}, m\right)=1$, and

$$
\sigma(N)=\frac{2 F_{n}}{F_{n}-1} N
$$

Then

$$
\frac{\sigma(m)}{m}=\frac{2^{a+1} F_{n}^{b+1}}{\left(2^{a+1}-1\right)\left(F_{n}^{b+1}-1\right)}
$$

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Let

$$
d=\operatorname{gcd}\left(2^{a+1} F_{n}^{b+1},\left(2^{a+1}-1\right)\left(F_{n}^{b+1}-1\right)\right) .
$$

As $F_{n}-1 \mid F_{n}^{b+1}-1$, then $d=2^{s} F_{n}^{t}$, where $2^{n} \leq s \leq a+1$ and $0 \leq t \leq b+1 \ldots$ (similar to 3-perfect, but trickier)...

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Let

$$
d=\operatorname{gcd}\left(2^{a+1} F_{n}^{b+1},\left(2^{a+1}-1\right)\left(F_{n}^{b+1}-1\right)\right) .
$$

As $F_{n}-1 \mid F_{n}^{b+1}-1$, then $d=2^{s} F_{n}^{t}$, where $2^{n} \leq s \leq a+1$ and $0 \leq t \leq b+1 \ldots$ (similar to 3-perfect, but trickier)...

We will have

$$
\begin{aligned}
\left(F_{n}, a, b, s\right) \in & \{(5,-1,-1,1),(5,0,0,2),(5,1,1,3),(5,4,2,2),(17,0,0,4) \\
& (257,0,0,8),(65537,0,0,16)\}
\end{aligned}
$$

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Since $a, b \geq 1$, we only have solutions for $F_{n}=5$ and then $\left(F_{n}, a, b\right)=(5,1,1)$ or $\left(F_{n}, a, b\right)=(5,4,2)$.

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Since $a, b \geq 1$, we only have solutions for $F_{n}=5$ and then $\left(F_{n}, a, b\right)=(5,1,1)$ or $\left(F_{n}, a, b\right)=(5,4,2)$.

If $\left(F_{n}, a, b\right)=(5,1,1)$ then

$$
\frac{\sigma(N)}{N}=\frac{5}{2}=\frac{3}{2} \cdot \frac{6}{5} \cdot \frac{\sigma(m)}{m} .
$$

Therefore, $9 \mid m$.

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Since $a, b \geq 1$, we only have solutions for $F_{n}=5$ and then $\left(F_{n}, a, b\right)=(5,1,1)$ or $\left(F_{n}, a, b\right)=(5,4,2)$.

If $\left(F_{n}, a, b\right)=(5,1,1)$ then

$$
\frac{\sigma(N)}{N}=\frac{5}{2}=\frac{3}{2} \cdot \frac{6}{5} \cdot \frac{\sigma(m)}{m} .
$$

Therefore, $9 \mid m$.
But then,

$$
\frac{\sigma(N)}{N}=\frac{5}{2} \geq \frac{3}{2} \cdot \frac{6}{5} \cdot \frac{13}{9}>\frac{5}{2} .
$$

We have a contradiction.

$\frac{2 F_{n}}{F_{n}-1}$-perfect numbers divisible by F_{n}

Since $a, b \geq 1$, we only have solutions for $F_{n}=5$ and then $\left(F_{n}, a, b\right)=(5,1,1)$ or $\left(F_{n}, a, b\right)=(5,4,2)$.

If $\left(F_{n}, a, b\right)=(5,1,1)$ then

$$
\frac{\sigma(N)}{N}=\frac{5}{2}=\frac{3}{2} \cdot \frac{6}{5} \cdot \frac{\sigma(m)}{m} .
$$

Therefore, $9 \mid m$.
But then,

$$
\frac{\sigma(N)}{N}=\frac{5}{2} \geq \frac{3}{2} \cdot \frac{6}{5} \cdot \frac{13}{9}>\frac{5}{2} .
$$

We have a contradiction.
Hence, $\left(F_{n}, a, b\right)=(5,4,2)$ and so $31^{2} \mid N$.

References

L. E. Dickson, History of the Theory of Numbers, Volume I: Divisibility and Primality, Chelsea Publishing Company, 1919.
L. Euler, Commentationes Arithmeticae Collectae, Vol. 2, Imperial Academy of Sciences, St. Petersburg, 1849.
A. Flammenkamp, The multiply perfect numbers page, http://wwwhomes.uni-bielefeld.de/achim/mpn.html, 2022.
R. K. Guy, C. B. Lacampagne, and J. L. Selfridge, Primes at a glance, Math. Comp. 48 (1987), 183-202.
J. A. Holdener and W. G. Stanton, Abundancy "outlaws" of the form $(\sigma(N)+t) / N$, J. Integer Sequences 10 (2007), Article 07.9.6.
P. Mihǎilescu, Primary cyclotomic units and a proof of catalans conjecture, J. Reine Angew. Math. 2004 (2004), 167-195.

References

R. Ryan, A simpler dense proof regarding the abundancy index, Math. Mag. 76 (2003), 299-301.
R. Scott, On the equations $p^{x}-b^{y}=c$ and $a^{x}+b^{y}=c^{z}$, J. Number Theory 44 (1993), 153-165.
R. Steuerwald, Ein Satz über natürliche Zahlen N mit $\sigma(N)=3 N$, Arch. Math. (Basel) 5 (1954), 449-451.
R. Styer, Small two-variable exponential diophantine equations, Math. Comp. 60 (1993), 811-816.
P. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (2000), 307-310.

Acknowledgments

Thank you for your attention.

This work is supported by Fundação para a Ciência e a Tecnologia (FCT) via PhD Scholarship PD/BD/150533/2019.

