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Concepts and notation

1 We define σ(N) as the sum of the positive divisors of N. It is a
multiplicative function;

2 We say N is a perfect number if σ(N) = 2N; we say N is an
α-perfect number if σ(N) = αN;

3 We write a | b if a divides b; we write an ∥ b if an divides b exactly,
i.e., an | b and an+1 does not divide b.

4 We say α is a p-abundancy outlaw if there is no positive integer N
such that σ(N) = αN and p | N, where p is a prime number.
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Motivation

Euclid-Euler Theorem

N is an even perfect number if and only if N = 2p−1(2p − 1), where 2p − 1
is a Mersenne prime number.

Euler’s proof

Suppose N = 2am and σ(N) = 2N. Then

2a+1m = σ(N)(2a+1 − 1)σ(m).

Since gcd(2a+1 − 1, 2a+1) = 1, then m = k(2a+1 − 1) and σ(m) = k2a+1.

Since k and m divide m, and σ(m) = k +m, then 2a+1 − 1 is a prime
number and k = 1.

Since 2a+1 − 1 is prime number then a+ 1 is a prime number p.

Therefore, N = 2p−1(2p − 1).
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Generalizing Euler’s method

Let α be a rational number and N > 1 be an α-perfect number.

As σ(N)
N is multiplicative and p+1

p ≤ σ(pa)
pa < p

p−1 , then there exist positive
integers r and m, prime numbers pi , and positive integers ai , with
1 ≤ i ≤ r , such that

N = m
r∏

i=1

paii , (1)

β = α

r∏
i=1

pi − 1

pi
≤ 1, (2)

and

gcd

(
m,

r∏
i=1

paii

)
= 1.
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Generalizing Euler’s method

Therefore, and by definition,

αm
r∏

i=1

paii = σ(N) = σ(m)
r∏

i=1

pai+1
i − 1

pi − 1
.

Consider

d = gcd

(
β

r∏
i=1

pai+1
i ,

r∏
i=1

(
pai+1
i − 1

))
.

Hence, for some integers k and d , we have

σ(m) =
βk

d

r∏
i=1

pai+1
i (3)

and

m =
k

d

r∏
i=1

(
pai+1
i − 1

)
, (4)
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Generalizing Euler’s method

We find a lower bound for σ(m), by summing divisors of m that are
explicitly indicated in

m =
k

d

r∏
i=1

(
pai+1
i − 1

)
. (5)

A comparison of the lower bound with

σ(m) =
βk

d

r∏
i=1

pai+1
i (6)

gave us contradictions or conditions on the form of N.

From now on, we will consider β = 1 (like Euler).
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Differences between powers of 2 and 3

Lemma

The only solutions of the diophantine equation

2a − 3b = −1 (7)

are (1, 1) and (3, 2). Also, the only solutions of the diophantine equation

2a − 3b = 2c − 1, (8)

are (2, 1, 1), (4, 2, 3), and (a, 0, a), ∀a ∈ N ∪ {0}.

Sketch of the proof

The first equation was solved by Mihăilescu (Catalan’s conjecture).

For the second equation, we take c ≥ 2.

If c is even then 3 | 2c − 1. Hence 3 | 2a − 3b. Contradiction.

If c is odd then... 23 ∥ 3b − 1. We conclude c = 3...then (a, b) = (4, 2).
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3-perfect numbers divisible by 6

Theorem

Suppose N is a 3-perfect number and 6 | N. Hence 2 ∥ N and 3 ∦ N, or
2 ∦ N and 3 ∥ N.

Sketch of the proof: Let N = 2a 3bm such that a, b ≥ 1, gcd(6,m) = 1,
and σ(N) = 3N.
Then

3N = 2a 3b+1m = σ(N) = (2a+1 − 1)
3b+1 − 1

2
σ(m).

Therefore,
σ(m)

m
=

2a+1 3b+1

(2a+1 − 1)(3b+1 − 1)
.

Let d = gcd
(
2a+1 3b+1, (2a+1 − 1)(3b+1 − 1)

)
. It is easy to see that

d = 2s 3t , where 1 ≤ s ≤ a+ 1 and 0 ≤ t ≤ b + 1.
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3-perfect numbers divisible by 6

Then, we have that

σ(m) =
2a+1 3b+1

2s 3t
k and m =

2a+1 − 1

3t
3b+1 − 1

2s
k ,

for some positive integer k .

Let us consider the following three cases, which will establish the claim.

Case A: Suppose that t ̸= 0.

Case B: Suppose that t = 0 and

2a+1 − 1 ̸= 3b+1 − 1

2s
.

Case C: Suppose that t = 0 and

2a+1 − 1 =
3b+1 − 1

2s
.
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3-perfect numbers divisible by 6

Case A: Suppose that t ̸= 0 and let

M = max

(
2a+1 − 1

3t
,
3b+1 − 1

2s

)
.

Then we have

σ(m)

k
=

2a+13b+1

2s 3t
= ... <

m

k
+M + 1.

Therefore,

σ(m) < m +Mk + k . (9)
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3-perfect numbers divisible by 6

Case A1: Mk ̸= m and M ̸= 1.

Case A2: Mk = m or M = 1.

In Case A1, we have: m, Mk and k are different divisors of m. Thus,

σ(m) ≥ m +Mk + k . (10)

By combination of inequalities (9) and (10), we have a contradiction.
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3-perfect numbers divisible by 6

In Case A2, we have:

2a+1 − 1

3t
= 1 or

3b+1 − 1

2s
= 1.

Therefore, 2a+1 − 3t = 1 or 3b+1 − 2s = 1. We have a = 1 or b = 1 (by
the solutions of the diophantine equations presented before).

Case B: Suppose that t = 0 and

2a+1 − 1 ̸= 3b+1 − 1

2s
.

Let

M ′ = min

(
2a+1 − 1,

3b+1 − 1

2s

)
.
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3-perfect numbers divisible by 6

Case B1: M ′ = 1.
Case B2: M ′ ̸= 1.

Case B1: Since M ′ = 1 then

2a+1 − 1 = 1 or
3b+1 − 1

2s
= 1.

Therefore, 2a+1 = 2 or 3b+1 − 2s = 1. As a, b ≥ 1, we conclude that
b = 1 (Catalan’s conjecture!).

Case B2: Since M ′ ̸= 1 then

m,
(
2a+1 − 1

)
k ,

3b+1 − 1

2s
k , and k ,

are different divisors of m. Therefore,

σ(m) ≥ m + (2a+1 − 1)k +
3b+1 − 1

2s
k + k > ... = σ(m).

We obtain a contradiction.
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are different divisors of m. Therefore,

σ(m) ≥ m + (2a+1 − 1)k +
3b+1 − 1

2s
k + k > ... = σ(m).

We obtain a contradiction.
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3-perfect numbers divisible by 6

Case C: Suppose that t = 0 and

2a+1 − 1 =
3b+1 − 1

2s
.

Then 2a+1+s − 3b+1 = 2s − 1.

We have (a, b) ∈ {(0, 0), (0, 1)} (by the solutions of the diophantine
equations presented before).
Since a, b ≥ 1 we obtain a contradiction.

Hence, we must have a = 1 or b = 1.
But...just one of them. Why? Black board, please!
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Differences between powers of 2 and Fn known prime

Lemma

Let Fn be the n-th Fermat number and consider the following exponential
diophantine equations

2a − F b
n = −1 (11)

and
2a − F b

n = 2c − 1. (12)

Then

(a) when n ∈ {1, 2, 3, 4}, Equation (11) only holds for (a, b) = (2n, 1);

(b) when n ∈ {2, 3, 4}, Equation (12) only holds for

(a, b, c) ∈ {(a, 0, a) | a ∈ Z} ∪ {(2n + 1, 1, 2n)};

(c) when n = 1, Equation (12) only holds for

(a, b, c) ∈ {(a, 0, a) | a ∈ Z} ∪ {(3, 1, 2), (7, 3, 2), (5, 2, 3)}.
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2Fn

Fn−1-perfect numbers divisible by Fn

Theorem

Let Fn be the n-th Fermat number. Then

1 if exists N such that σ(N)
N = F1

2 and F1 | N, then 24 ∥ N,F 2
1 ∥ N, and

312 | N.

2 if n ∈ {2, 3, 4} then 2Fn
Fn−1 is a Fn-abundancy outlaw.

Sketch of the proof: Let n ∈ {1, 2, 3, 4} and Fn = 22
n
+ 1. We can write

N = 2aF b
nm such that a, b ≥ 1, gcd(2Fn,m) = 1, and

σ(N) =
2Fn

Fn − 1
N.

Then
σ(m)

m
=

2a+1 F b+1
n

(2a+1 − 1)(F b+1
n − 1)

.
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2Fn

Fn−1-perfect numbers divisible by Fn

Let
d = gcd

(
2a+1 F b+1

n , (2a+1 − 1)(F b+1
n − 1)

)
.

As Fn − 1 | F b+1
n − 1, then d = 2s F t

n , where 2n ≤ s ≤ a+ 1 and
0 ≤ t ≤ b + 1...(similar to 3-perfect, but trickier)...

We will have

(Fn, a, b, s) ∈{(5,−1,−1, 1), (5, 0, 0, 2), (5, 1, 1, 3), (5, 4, 2, 2), (17, 0, 0, 4),

(257, 0, 0, 8), (65537, 0, 0, 16)}.
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2Fn

Fn−1-perfect numbers divisible by Fn

Since a, b ≥ 1, we only have solutions for Fn = 5 and then
(Fn, a, b) = (5, 1, 1) or (Fn, a, b) = (5, 4, 2).

If (Fn, a, b) = (5, 1, 1) then

σ(N)

N
=

5

2
=

3

2
· 6
5
· σ(m)

m
.

Therefore, 9 | m.
But then,

σ(N)

N
=

5

2
≥ 3

2
· 6
5
· 13
9

>
5

2
.

We have a contradiction.

Hence, (Fn, a, b) = (5, 4, 2) and so 312 | N.
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