Local-global divisibility on algebraic tori

Jessica Alessandrì

Università degli Studi dell'Aquila

Joint work with Rocco Chirivì and Laura Paladino

32èmes Journées Arithmétiques 2023

6 July 2023

Let

- *k* be a number field;
- M_k be the set of places of k;
- k_v be the completion of k at $v \in M_k$;

Let

- k be a number field;
- *M_k* be the set of places of *k*;
- k_v be the completion of k at $v \in M_k$;

Theorem (Hasse principle for quadratic forms, 1924)

A quadratic form $F(X_1, ..., X_n) \in k[X_1, ..., X_n]$ has nontrivial zeros in k if and only if it has nontrivial zeros in k_v , for every $v \in M_k$.

"for every $v \in M_k$ " \longrightarrow "for all but finitely many $v \in M_k$ "

Question

With $k = \mathbb{Q}$ and n = 2: is it true that if $m \in \mathbb{Q}$ is a square modulo almost all primes, then it is a (perfect) square in \mathbb{Q} ?

"for every $v \in M_k$ " \longrightarrow "for all but finitely many $v \in M_k$ "

Question

With $k = \mathbb{Q}$ and n = 2: is it true that if $m \in \mathbb{Q}$ is a square modulo almost all primes, then it is a (perfect) square in \mathbb{Q} ?

Question (revisited)

With *q*-powers and arbitrary *k*: is it true that if $P \in \mathbb{G}_m(k)$ is such that $P = R_v^q$ in $\mathbb{G}_m(k_v)$ for almost every *v*, then $P = R^q$ in $\mathbb{G}_m(k)$?

"for every $v \in M_k$ " \longrightarrow "for all but finitely many $v \in M_k$ "

Question

With $k = \mathbb{Q}$ and n = 2: is it true that if $m \in \mathbb{Q}$ is a square modulo almost all primes, then it is a (perfect) square in \mathbb{Q} ?

Question (revisited)

With *q*-powers and arbitrary *k*: is it true that if $P \in \mathbb{G}_m(k)$ is such that $P = R_v^q$ in $\mathbb{G}_m(k_v)$ for almost every *v*, then $P = R^q$ in $\mathbb{G}_m(k)$?

An answer is given by the Grunwald-Wang Theorem.

3 / 18

Let $\mathcal G$ be a commutative algebraic group defined over k and fix q a positive integer.

Problem (Dvornicich and Zannier, 2001)

If $P \in \mathcal{G}(k)$ is such that $P = qD_v$ for some $D_v \in \mathcal{G}(k_v)$, for all but finitely many $v \in M_k$, can we conclude that P = qD for some $D \in \mathcal{G}(k)$?

Let $\mathcal G$ be a commutative algebraic group defined over k and fix q a positive integer.

Problem (Dvornicich and Zannier, 2001)

If $P \in \mathcal{G}(k)$ is such that $P = qD_v$ for some $D_v \in \mathcal{G}(k_v)$, for all but finitely many $v \in M_k$, can we conclude that P = qD for some $D \in \mathcal{G}(k)$?

By the Bézout identity it is enough to answer when $q = p^r$, with p prime.

Fix $q = p^r$, with p prime number.

JA23

< 47 ▶

э

Fix $q = p^r$, with p prime number.

 $\mathcal{K} := k\left(\mathcal{G}[q]\right)$ is finite Galois over k with $\mathcal{G} := \operatorname{Gal}(\mathcal{K}/k)$.

Fix $q = p^r$, with p prime number.

 $\mathcal{K}:=k\left(\mathcal{G}[q]
ight)$ is finite Galois over k with $\mathcal{G}:=\mathrm{Gal}(\mathcal{K}/k).$

Definition

We say that the class of a cocycle $[c] = [\{Z_{\sigma}\}_{\sigma \in G}] \in H^1(G, \mathcal{G}[q])$ satisfies the local conditions if

$$\forall \sigma \in G \; \exists W_{\sigma} \in \mathcal{G}[q] \; ext{s.t.} \; Z_{\sigma} = (\sigma - 1)W_{\sigma}.$$

The subgroup of $H^1(G, \mathcal{G}[q])$ of these classes is called the **first local** cohomology group $H^1_{loc}(G, \mathcal{G}[q])$.

Fix $q = p^r$, with p prime number.

 $\mathcal{K}:=k\left(\mathcal{G}[q]
ight)$ is finite Galois over k with $\mathcal{G}:=\mathrm{Gal}(\mathcal{K}/k).$

Definition

We say that the class of a cocycle $[c] = [\{Z_{\sigma}\}_{\sigma \in G}] \in H^1(G, \mathcal{G}[q])$ satisfies the local conditions if

$$\forall \sigma \in G \; \exists W_{\sigma} \in \mathcal{G}[q] \; ext{s.t.} \; Z_{\sigma} = (\sigma - 1)W_{\sigma}.$$

The subgroup of $H^1(G, \mathcal{G}[q])$ of these classes is called the **first local** cohomology group $H^1_{loc}(G, \mathcal{G}[q])$.

$$\mathrm{H}^{1}_{\mathrm{loc}}(G,\mathcal{G}[q]) = igcap_{\substack{C \leq G \\ C \text{ cyclic}}} \mathrm{ker} \left(\mathrm{H}^{1}(G,\mathcal{G}[q]) \stackrel{\mathrm{res}}{\longrightarrow} \mathrm{H}^{1}(C,\mathcal{G}[q])
ight).$$

Fix $q = p^r$, with p prime number.

 $\mathcal{K}:=k\left(\mathcal{G}[q]
ight)$ is finite Galois over k with $\mathcal{G}:=\mathrm{Gal}(\mathcal{K}/k).$

Definition

We say that the class of a cocycle $[c] = [\{Z_{\sigma}\}_{\sigma \in G}] \in H^1(G, \mathcal{G}[q])$ satisfies the local conditions if

$$\forall \sigma \in G \ \exists W_{\sigma} \in \mathcal{G}[q] \text{ s.t. } Z_{\sigma} = (\sigma - 1)W_{\sigma}.$$

The subgroup of $H^1(G, \mathcal{G}[q])$ of these classes is called the **first local** cohomology group $H^1_{loc}(G, \mathcal{G}[q])$.

$$\mathrm{H}^{1}_{\mathrm{loc}}(\mathcal{G},\mathcal{G}[q]) = igcap_{\substack{\mathcal{C} \leq \mathcal{G} \\ \mathcal{C} \text{ cyclic}}} \ker \left(\mathrm{H}^{1}(\mathcal{G},\mathcal{G}[q]) \stackrel{\mathrm{res}}{\longrightarrow} \mathrm{H}^{1}(\mathcal{C},\mathcal{G}[q])
ight).$$

Clearly, if G is cyclic then $\mathrm{H}^1_{\mathrm{loc}}(G,\mathcal{G}[q])=0.$

 $\Sigma = \{ v \in M_k \mid v \text{ unramified in } K \}$ If $v \in \Sigma$ and $w \mid v$, the group $G_v = \text{Gal}(K_w / k_v)$ is cyclic. $\Sigma = \{ v \in M_k \mid v \text{ unramified in } K \}$

If $v \in \Sigma$ and w | v, the group $G_v = \operatorname{Gal}(K_w / k_v)$ is cyclic.

By the Čhebotarev Density Theorem, G_v varies over all cyclic subgroups of G, as v varies in Σ .

6 / 18

 $\Sigma = \{ v \in M_k \mid v \text{ unramified in } K \}$

If $v \in \Sigma$ and w | v, the group $G_v = \operatorname{Gal}(K_w/k_v)$ is cyclic.

By the Čhebotarev Density Theorem, G_v varies over all cyclic subgroups of G_1 as v varies in Σ .

$$\mathrm{H}^{1}_{\mathrm{loc}}\left(\mathcal{G},\mathcal{G}[q]\right) = \bigcap_{\nu \in \Sigma} \ker\left(\mathrm{H}^{1}(\mathcal{G},\mathcal{G}[q]) \xrightarrow{\mathrm{res}_{\nu}} \mathrm{H}^{1}(\mathcal{G}_{\nu},\mathcal{G}[q])\right).$$
(1)

<u>Remark</u>: if we take all places we get a group isomorphic to the Tate-Shafarevich group $\operatorname{III}(k, \mathcal{G}[q])$.

Theorem (Dvornicich - Zannier, 2001)

If $\mathrm{H}^{1}_{\mathrm{loc}}(G, \mathcal{G}[q]) = 0$, then the local-global divisibility by q holds in $\mathcal{G}(k)$.

▲ 西部

Theorem (Dvornicich - Zannier, 2001)

If $\mathrm{H}^{1}_{\mathrm{loc}}(G, \mathcal{G}[q]) = 0$, then the local-global divisibility by q holds in $\mathcal{G}(k)$.

Let G_p be a p-Sylow subgroup of G.

Theorem (Dvornicich - Zannier, 2001)

$$\mathrm{H}^{1}_{\mathrm{loc}}\left(\mathcal{G}_{\rho},\mathcal{G}[q]\right)=0\implies \mathrm{H}^{1}_{\mathrm{loc}}\left(\mathcal{G},\mathcal{G}[q]\right)=0$$

Theorem (Dvornicich - Zannier, 2001)

If $\mathrm{H}^{1}_{\mathrm{loc}}(G, \mathcal{G}[q]) = 0$, then the local-global divisibility by q holds in $\mathcal{G}(k)$.

Let G_p be a p-Sylow subgroup of G.

Theorem (Dvornicich - Zannier, 2001)

 $\mathrm{H}^{1}_{\mathrm{loc}}\left(\mathcal{G}_{p},\mathcal{G}[q]\right)=0\implies \mathrm{H}^{1}_{\mathrm{loc}}\left(\mathcal{G},\mathcal{G}[q]\right)=0$

Theorem (Dvornicich - Zannier, 2007)

If $\mathrm{H}^{1}_{\mathrm{loc}}(G, \mathcal{G}[q]) \neq 0$, there exists a number field L such that the local-global divisibility by q does not hold for $\mathcal{G}(L)$.

7 / 18

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト …

• Elliptic curves:

yes for q = p;
yes for q = p^r:
with p ≥ 5 if k = Q,
with p > C([k:Q]) if k does not contain Q(ζ_p + ζ_p);
no for q = 2^m, 3^m, with m ≥ 2.

Elliptic curves:

- yes for q = p;
- yes for $q = p^r$:
 - with $p \geq 5$ if $k = \mathbb{Q}$,
 - with $p > C([k : \mathbb{Q}])$ if k does not contain $\mathbb{Q}(\zeta_p + \overline{\zeta}_p)$;

• no for
$$q = 2^m, 3^m$$
, with $m \ge 2$.

• Abelian varieties: conditions on $\mathcal{A}[q]$ for principally polarized abelian varieties, for $q = p^r$.

• Elliptic curves:

- yes for q = p;
- yes for $q = p^r$:

with
$$p \ge 5$$
 if $k = \mathbb{Q}$

• with $p > C([k : \mathbb{Q}])$ if k does not contain $\mathbb{Q}(\zeta_p + \overline{\zeta}_p)$;

• no for
$$q = 2^m, 3^m$$
, with $m \ge 2$.

- Abelian varieties: conditions on $\mathcal{A}[q]$ for principally polarized abelian varieties, for $q = p^r$.
- General commutative groups: conditions for q = p.

Theorem (Grunwald-Wang Theorem)

Let $m = 2^t m'$ be an integer, with m' odd. If $\alpha \in k^{\times}$ is such that $\alpha \in k_p^m$ for all but finitely many primes and $k(\zeta_{2^t})/k$ is cyclic, then $\alpha \in k^m$.

Thus, for m odd, or divisible at most by 4, the answer is affirmative.

Theorem (Grunwald-Wang Theorem)

Let $m = 2^t m'$ be an integer, with m' odd. If $\alpha \in k^{\times}$ is such that $\alpha \in k_p^m$ for all but finitely many primes and $k(\zeta_{2^t})/k$ is cyclic, then $\alpha \in k^m$.

Thus, for m odd, or divisible at most by 4, the answer is affirmative. For $m = 2^t$, with $t \ge 3$, the answer is negative.

Theorem (Grunwald-Wang Theorem)

Let $m = 2^t m'$ be an integer, with m' odd. If $\alpha \in k^{\times}$ is such that $\alpha \in k_p^m$ for all but finitely many primes and $k(\zeta_{2^t})/k$ is cyclic, then $\alpha \in k^m$.

Thus, for m odd, or divisible at most by 4, the answer is affirmative. For $m = 2^t$, with $t \ge 3$, the answer is negative.

Example (Trost, 1948)

The equation $x^8 - 16 = 0$ has solutions in \mathbb{Q}_p for all odd primes p, but has no solution in \mathbb{Q} (and \mathbb{Q}_2).

9/18

▲ 西部

2

Theorem (Dvornicich - Zannier, 2001)

If T is an algebraic k-torus of dimension $n \le \max(3, 2(p-1))$, then the local-global divisibility by p holds for T(k).

Jessica Alessandrì (UnivAq) Local-global divisibility on algebraic tori

Theorem (Dvornicich - Zannier, 2001)

If T is an algebraic k-torus of dimension $n \le \max(3, 2(p-1))$, then the local-global divisibility by p holds for T(k).

Example (Dvornicich - Zannier, 2001)

There exists a torus T over $k = \mathbb{Q}(\zeta_{p^3})$, with dim $(T) = p^4 - p^2 + 1$, and a point $P \in T(k)$ such that P locally p-divisible for all but finitely many $v \in M_k$, but not globally.

10/18

Theorem (Dvornicich - Zannier, 2001)

If T is an algebraic k-torus of dimension $n \le \max(3, 2(p-1))$, then the local-global divisibility by p holds for T(k).

Example (Dvornicich - Zannier, 2001)

There exists a torus T over $k = \mathbb{Q}(\zeta_{p^3})$, with dim $(T) = p^4 - p^2 + 1$, and a point $P \in T(k)$ such that P locally p-divisible for all but finitely many $v \in M_k$, but not globally.

The problem was left open for $2p - 1 \leq \dim(T) < p^4 - p^2 + 1$.

10/18

Theorem (Illengo, 2008)

Let $p \neq 2$ be a prime and T an algebraic k-torus of dimension n < 3(p-1). Then the local-global divisibility by p holds for T(k).

Theorem (Illengo, 2008)

Let $p \neq 2$ be a prime and T an algebraic k-torus of dimension n < 3(p-1). Then the local-global divisibility by p holds for T(k).

Proposition (Illengo, 2008)

There exists T with dim(T) = 3(p-1) defined over some k and (possibly extending k) a $P \in T(k)$ for which the local-global divisibility by $p \neq 2$ fails.

Thus the bound founded for the local-global divisibily by p is sharp.

11/18

The case q = p on algebraic tori is completely solved. What can we say for $q = p^r$?

▲ 西部

э

The case q = p on algebraic tori is completely solved. What can we say for $q = p^r$?

Theorem 1 (A., Chirivì, Paladino)

Let $p \neq 2$ be a prime.

- (a) Let T be a torus defined over k. If $\dim(T) , then the local-global divisibility by every power <math>p^r$ holds for T(k).
- (b) For each $n \ge p 1$ there exists a torus T defined over a number field k with dim(T) = n and a finite extension L/k such that the local-global divisibility by p^r does not hold for T(L) for any $r \ge 2$.

The case q = p on algebraic tori is completely solved. What can we say for $q = p^r$?

Theorem 1 (A., Chirivì, Paladino)

Let $p \neq 2$ be a prime.

- (a) Let T be a torus defined over k. If $\dim(T) , then the local-global divisibility by every power <math>p^r$ holds for T(k).
- (b) For each $n \ge p 1$ there exists a torus T defined over a number field k with dim(T) = n and a finite extension L/k such that the local-global divisibility by p^r does not hold for T(L) for any $r \ge 2$.

To prove (a), we showed that if dim $(T) then <math>G_p$ is cyclic $\implies H^1_{loc}(G_p, T[p^r]) = 0.$

12 / 18

ヘロト 人間ト 人団ト 人団トー

Sketch of proof of part (b)

<u>Remark</u>: $T[q] \simeq (\mathbb{Z}/q\mathbb{Z})^n$, with $n = \dim(T)$. Gal $(k(T[q])/k) \longrightarrow \operatorname{GL}_n(\mathbb{Z}/q\mathbb{Z})$.

э

< □ > < 同 > < 回 > < 回 > < 回 >

<u>Remark</u>: $T[q] \simeq (\mathbb{Z}/q\mathbb{Z})^n$, with $n = \dim(T)$. Gal $(k(T[q])/k) \longrightarrow \operatorname{GL}_n(\mathbb{Z}/q\mathbb{Z})$.

Lemma 2 (A., Chirivì, Paladino)

There exists an algebraic torus T of dimension r = p - 1 defined over $\mathbb{Q}(\zeta_p)$ such that $G = \operatorname{Gal}(k(T[p^2])/k) \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ and is generated in $\operatorname{GL}_r(\mathbb{Z}/p^2\mathbb{Z})$ by

$$\gamma_{1} = \begin{pmatrix} 0 & & & -1 \\ 1 & 0 & & & -1 \\ & \ddots & & \ddots & & \vdots \\ & & 1 & 0 & -1 \\ & & & 1 & -1 \end{pmatrix} \quad and \quad \gamma_{2} = \begin{pmatrix} p+1 & & \\ & \ddots & \\ & & p+1 \end{pmatrix}.$$

Lemma 3 (A., Chirivì, Paladino)

There exists a (unique) extension of

$$\gamma_{1} \longmapsto v_{1} = \begin{pmatrix} p-1\\ 0\\ \vdots\\ 0\\ 1 \end{pmatrix}, \quad \gamma_{2} \longmapsto v_{2} = \begin{pmatrix} p\\ \vdots\\ p\\ 0 \end{pmatrix}$$
to a non-trivial element of $\mathrm{H}_{\mathrm{loc}}^{1} \left(G, \left(\mathbb{Z}/p^{2}\mathbb{Z} \right)^{p-1} \right).$

 $\mathrm{H}^{1}_{\mathrm{loc}}\left(G,T[p^{2}]\right)\neq0\implies$ local-global divisibility by p^{2} fails (in a finite extension).

14 / 18

・ 何 ト ・ ヨ ト ・ ヨ ト …

Lemma 3 (A., Chirivì, Paladino)

There exists a (unique) extension of

$$\gamma_{1} \longmapsto v_{1} = \begin{pmatrix} p-1\\0\\\vdots\\0\\1 \end{pmatrix}, \quad \gamma_{2} \longmapsto v_{2} = \begin{pmatrix} p\\\vdots\\p\\0 \end{pmatrix}$$

ivial element of H¹ $\left(C \left(\mathbb{Z} / p^{2} \mathbb{Z} \right)^{p-1} \right)$

to a non-trivial element of $\mathrm{H}^{1}_{\mathrm{loc}}\left(G,\left(\mathbb{Z}/p^{2}\mathbb{Z}\right)^{r}\right)$.

 $\mathrm{H}^{1}_{\mathrm{loc}}(G, T[p^{2}]) \neq 0 \implies \text{local-global divisibility by } p^{2} \text{ fails (in a finite extension).}$ For $r \geq 2$: p^{2} -divisibility fails $\implies p^{r}$ -divisibility fails.

14 / 18

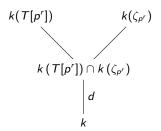
・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

If $\zeta_{p^r} \in k$ the local-global divisibility by every odd p^r still holds.

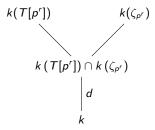
3

< □ > < 同 > < 回 > < 回 > < 回 >

If $\zeta_{p^r} \in k$ the local-global divisibility by every odd p^r still holds. $d := [k(T[p^r]) \cap k(\zeta_{p^r}) : k].$



If $\zeta_{p^r} \in k$ the local-global divisibility by every odd p^r still holds. $d := [k(T[p^r]) \cap k(\zeta_{p^r}) : k].$



Theorem 4 (A., Chirivì, Paladino)

If T is a torus defined over k with dim(T) < 3(p-1) and $p \nmid d$, then the local-global divisibility by p^r holds for T(k).

15/18

For r = 1, we have the results of Dvornicich-Zannier and Illengo.

For r = 1, we have the results of Dvornicich-Zannier and Illengo. Assume $r \ge 2$ and $\mathrm{H}^{1}_{\mathrm{loc}}(\mathrm{Gal}(k\left(\mathcal{T}[p^{j}]\right)/k), \mathcal{T}[p^{j}]) = 0$ for j < r.

$$1 \longrightarrow T[p] \stackrel{\iota}{\longrightarrow} T[p^{r}] \stackrel{\varepsilon}{\longrightarrow} T[p^{r-1}] \longrightarrow 1$$

$$1 \longrightarrow T[p] \stackrel{\iota}{\longrightarrow} T[p^r] \stackrel{\varepsilon}{\longrightarrow} T[p^{r-1}] \longrightarrow 1$$

which induces

$$\mathrm{H}^{1}_{\mathrm{loc}}(G,T[\rho]) \longrightarrow \mathrm{H}^{1}_{\mathrm{loc}}(G,T[\rho^{r}]) \longrightarrow \mathrm{H}^{1}_{\mathrm{loc}}(G,T[\rho^{r-1}])$$

16 / 18

$$1 \longrightarrow T[p] \stackrel{\iota}{\longrightarrow} T[p^{r}] \stackrel{\varepsilon}{\longrightarrow} T[p^{r-1}] \longrightarrow 1$$

which induces

$$\begin{array}{rcl} \mathrm{H}^{1}_{\mathrm{loc}}(G,\mathcal{T}[p]) & \longrightarrow & \mathrm{H}^{1}_{\mathrm{loc}}(G,\mathcal{T}[p^{r}]) & \longrightarrow & \mathrm{H}^{1}_{\mathrm{loc}}(G,\mathcal{T}[p^{r-1}]) \\ & = 0 & & = 0 \end{array}$$

16 / 18

$$1 \longrightarrow T[p] \stackrel{\iota}{\longrightarrow} T[p^{r}] \stackrel{\varepsilon}{\longrightarrow} T[p^{r-1}] \longrightarrow 1$$

which induces

$$\begin{array}{rcl} \mathrm{H}^{1}_{\mathrm{loc}}(G, \mathcal{T}[p]) & \longrightarrow & \mathrm{H}^{1}_{\mathrm{loc}}(G, \mathcal{T}[p^{r}]) & \longrightarrow & \mathrm{H}^{1}_{\mathrm{loc}}(G, \mathcal{T}[p^{r-1}]) \\ & = 0 & & = 0 \end{array}$$

$$\implies \operatorname{H}^1_{\operatorname{loc}}(G, T[p^r]) = 0.$$

Thank you for your attention!

- J. Alessandrì, R. Chirivì and L. Paladino, *Local-global divisibility on algebraic tori*, 2023, submitted.
- R. Dvornicich and U. Zannier, Local-global divisibility of rational points in some commutative algebraic groups, Bull. Soc. Math. France 129, no. 3 (2001), 317–338.
- Dvornicich R. and Paladino L., *Local-global questions for divisibility in commutative algebraic groups*, Eur. J. Math., **8** (2022), 599–628.
- Dvornicich R. and Zannier U., On a local-global principle for the divisibility of a rational point by a positive integer, Bull. Lond. Math. Soc. 39 (2007), 27–34.
- M. Illengo, *Cohomology of integer matrices and local-global divisibility on the torus*, J. Théor. Nombres Bordeaux, **20** (2008), 327–334.

18 / 18

· · · · · · · · ·