Conjecturetwisted
Thue equations

Tobias Hilgart

Motivation

On a conjecture of Levesque and Waldschmidt

Theorem

Discussion

Tobias Hilgart
University of Salzburg

July 3, 2023

Overview

Conjecture twisted Thue equations

Tobias Hilgart

Motivation
Theorem
Discussion
1 Motivation

2 Statement and Discussion

What's in a Thue equation?

```
Conjecture-
    twisted
    Thue
equations
    Tobias
    Hilgart
Motivation
■ Diophantine equation \(f(x, y)=m\)
- \(f \in \mathbb{Z}[x, y]\)
- \(f\) irreducible, homogenous
- \(\operatorname{deg} f \geq 3\)
```


What's in a Thue equation?

Conjecture-
twisted Thue equations

Tobias Hilgart

Motivation
Theorem
Discussion

■ Diophantine equation $f(x, y)=m$

- $f \in \mathbb{Z}[x, y]$
- f irreducible, homogenous
- $\operatorname{deg} f \geq 3$

Theorem (A. Baker; 1968)

Let $\mathrm{\kappa}>\operatorname{deg} f+1$. All solutions of $f(x, y)=m$ in integers x, y satisfy

$$
\max (|x|,|y|)<C e^{(\log m)^{k}}
$$

where C is an effectively computable number depending only on $\operatorname{deg} f, \kappa$, and the coefficients of f.

What's in a family of Thue equations?

Conjecturetwisted Thue equations

Tobias Hilgart

■ Family of (parametrised) Thue equations $\left\{f_{n}: n \in \mathbb{N}\right\}$

- f_{n} Thue equation
- $f_{n} \in \mathbb{Z}[n][x, y]$

What's in a family of Thue equations?

Conjecture-
twisted Thue equations

Tobias Hilgart

Motivation
Theorem
Discussion

- Family of (parametrised) Thue equations $\left\{f_{n}: n \in \mathbb{N}\right\}$
- f_{n} Thue equation
- $f_{n} \in \mathbb{Z}[n][x, y]$

Theorem (E. Thomas; 1990)

Let n be an integer with $n \geq 1.365 \times 10^{7}$. Then the equation

$$
x^{3}-(n-1) x^{2} y-(n+2) x y^{2}-y^{3}= \pm 1, \quad n \geq 0
$$

has only the trivial solutions $(0, \pm 1),(\pm 1,0),(\pm 1, \mp 1)$.

What's in a twist?

Conjecture twisted Thue equations

Tobias Hilgart

Motivation
Theorem
Discussion

- Take Thomas' family of Thue equations

$$
f_{n}(x, y)=\left(x-\lambda_{0} y\right)\left(x-\lambda_{1} y\right)\left(x-\lambda_{2} y\right)= \pm 1
$$

What's in a twist?

Conjecturetwisted Thue equations

Tobias Hilgart

Motivation
■ Twist equation by an exponential parameter a

$$
f_{n, a}(x, y)=\left(x-\lambda_{0}^{a} y\right)\left(x-\lambda_{1}^{a} y\right)\left(x-\lambda_{2}^{a} y\right)= \pm 1
$$

What's in a twist?

Conjecture
twisted Thue equations

Tobias
Hilgart

Motivation Theorem

Discussion

- Take Thomas' family of Thue equations

$$
f_{n}(x, y)=\left(x-\lambda_{0} y\right)\left(x-\lambda_{1} y\right)\left(x-\lambda_{2} y\right)= \pm 1
$$

■ Twist equation by an exponential parameter a

$$
f_{n, a}(x, y)=\left(x-\lambda_{0}^{a} y\right)\left(x-\lambda_{1}^{a} y\right)\left(x-\lambda_{2}^{a} y\right)= \pm 1
$$

Theorem (C. Levesque and M. Waldschmidt; 2015)

Let $f_{n, a}(x, y)= \pm 1$ with $a \neq 0$ and $\max (|x|,|y|) \geq 2$. Then there exists an effectively computable constant κ_{2} such that

$$
\max (|n|,|a|,|x|,|y|) \leq \kappa_{2} .
$$

What's in a conjecture?

Conjecturetwisted Thue equations
 ■ Number field $\mathbb{Q}\left(\lambda_{0}\right)$ has unit rank 2
 - $\lambda_{0}, \lambda_{1}, \lambda_{2}$ are integers in $\mathbb{Q}\left(\lambda_{0}\right)$

Tobias Hilgart

Motivation
Theorem
Discussion

What's in a conjecture?

- Number field $\mathbb{Q}\left(\lambda_{0}\right)$ has unit rank 2
- $\lambda_{0}, \lambda_{1}, \lambda_{2}$ are integers in $\mathbb{Q}\left(\lambda_{0}\right)$

Conjecture (C. Levesque and M. Waldschmidt; 2015)

For s, t and n in \mathbb{Z} define

$$
f_{n, s, t}(x, y)=\left(x-\lambda_{0}^{s} \lambda_{1}^{t} y\right)\left(x-\lambda_{1}^{s} \lambda_{2}^{t} y\right)\left(x-\lambda_{2}^{s} \lambda_{0}^{t} y\right)
$$

There exists a positive absolute constant κ_{3} with the following property: If n, s, t, x, y are integers satisfying

$$
\max (|x|,|y|) \geq 2, \quad(s, t) \neq(0,0), \quad \text { and } f_{n, s, t}(x, y)= \pm 1
$$

then

$$
\max (\log |n|,|s|,|t|, \log |x|, \log |y|) \leq \kappa_{3} .
$$

What's in a theorem?

Conjecture-
twisted
Thue equations

Tobias Hilgart

Motivation
Theorem
Discussion

Theorem (T. Hilgart and V. Ziegler; 2023)

For s, t and n in \mathbb{Z} define

$$
f_{n, s, t}(x, y)=\left(x-\lambda_{0}^{s} \lambda_{1}^{t} y\right)\left(x-\lambda_{1}^{s} \lambda_{2}^{t} y\right)\left(x-\lambda_{2}^{s} \lambda_{0}^{t} y\right) .
$$

Let $\varepsilon>0$. There exists an effectively computable constant $\kappa>0$ with the following property: If n, s, t, x, y are integers satisfying

$$
|y| \geq 2, \quad n \geq 3, \quad \text { st } \neq 0, \quad \text { and } \quad f_{n, s, t}(x, y)= \pm 1,
$$

as well as

$$
\min (|2 s-t|,|2 t-s|,|s+t|)>\varepsilon \cdot \max (|s|,|t|)>2,
$$

then

$$
\max (\log |n|,|s|,|t|, \log |x|, \log |y|) \leq \kappa
$$

What's in a condition?

Tobias

- What's the problem with $2 s=t$?

Motivation

Theorem
Discussion

What's in a condition?

Conjecture-

 twisted Thue equationsTobias Hilgart

Motivation

Theorem

- What's the problem with $2 s=t$?
- $f_{n, s, t}(x, y)=\left(x-\lambda_{0}^{s} \lambda_{1}^{t} y\right)\left(x-\lambda_{1}^{s} \lambda_{2}^{t} y\right)\left(x-\lambda_{2}^{s} \lambda_{0}^{t} y\right)$
- $\lambda_{0} \approx n, \lambda_{1} \approx 0, \lambda_{2} \approx-1$

What's in a condition?

Conjecture-

 twisted Thue equationsTobias Hilgart

Motivation

Theorem

- What's the problem with $2 s=t$?
- $f_{n, s, t}(x, y)=\left(x-\lambda_{0}^{s} \lambda_{1}^{t} y\right)\left(x-\lambda_{1}^{s} \lambda_{2}^{t} y\right)\left(x-\lambda_{2}^{s} \lambda_{0}^{t} y\right)$
- $\lambda_{0} \approx n, \lambda_{1} \approx 0, \lambda_{2} \approx-1$

$$
\frac{\lambda_{0}^{s} \lambda_{1}^{t}}{\lambda_{1}^{s} \lambda_{2}^{t}}=\lambda_{0}^{2 s-t} \lambda_{2}^{2 t-s}
$$

What's in a condition?

Conjecture-

 twisted Thue equationsTobias Hilgart

Motivation
Theorem

- What's the problem with $2 s=t$?
- $f_{n, s, t}(x, y)=\left(x-\lambda_{0}^{s} \lambda_{1}^{t} y\right)\left(x-\lambda_{1}^{s} \lambda_{2}^{t} y\right)\left(x-\lambda_{2}^{s} \lambda_{0}^{t} y\right)$
- $\lambda_{0} \approx n, \lambda_{1} \approx 0, \lambda_{2} \approx-1$

$$
\frac{\lambda_{0}^{s} \lambda_{1}^{t}}{\lambda_{1}^{s} \lambda_{2}^{t}}=\lambda_{0}^{2 s-t} \lambda_{2}^{2 t-s}
$$

- only $\lambda_{2}^{2 t-s}$ remains!

What's in a future paper?

Conjecture-

 twisted Thue equationsTobias
Hilgart

Motivation
Theorem
Discussion

■ If we can solve the case $2 s=t$, i.e.

$$
\left(x-\lambda_{0}^{s} \lambda_{1}^{2 s} y\right)\left(x-\lambda_{1}^{s} \lambda_{2}^{2 s} y\right)\left(x-\lambda_{2}^{s} \lambda_{0}^{2 s} y\right)= \pm 1
$$

we can solve the Conjecture.

What's in a Ende Ente

