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Introduction - Continued fractions

Every α ∈ R has a (unique) continued fraction expansion
α = a0 +

1
a1+

1

a2+
1

a3+...

= [a0; a1, a2, . . .], ai ∈ N.

α ∈ Q, if and only if the expansion is finite, that is,
α = [a0; a1, . . . , ar ] for some r ∈ N.
π = [3; 7, 15, 1, 292, 1, 1, 1, 2, . . .], e =

[2; 1, 2, 1, 1, 4, 1, 1, . . .],Φ = 1+
√
5

2 = [1; 1, 1, 1, 1, . . .].

The convergents pi
qi

= [a0; a1, a2, . . . , ai ] approximate α by

1

(ai+1 + 2)q2i
≤ (−1)i

(
α− pi

qi

)
≤ 1

ai+1q2i
.

Theorem of Legendre: if |α− p
q | ≤

1
2q2

, then p
q is a

convergent of α.
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Distribution of ak , qk for random irrationals

Drawing an irrational uniformly at random from [0, 1), what is
the probability that ai = m?

P[qk ≥ f (k)],P[ai+n = j | ai = k],P[∃∞ many k : ak >
f (k)],P[

∑k
i=1 ak > f (k)], . . .

P = Lebesgue measure on [0, 1). The statements above (and
many more) can be solved with
measure-theoretic/probabilistic methods.
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Distribution for random irrationals

Gauss-Kuzmin theorem:

P[an = m] = log2

(
1 +

1

m(m + 2)

)
+ O(e−cn).

Mixing property:

P[ai = j , ai+n = k] = P[ai = j ] · P[ai+n = k] + O(e−cn).

The distribution of (ai )i∈N is very close to i.i.d. variables

(Xi )i∈N where P[Xi = m] = log2

(
1 + 1

m(m+2)

)
⇒ many

theorems from classical probability hold (laws of large
numbers, central limit theorems, LDPs, ...).
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Diophantine behaviour of random rationals

Question: What can be transferred to a random rational?
What is meant by random rational? Two natural candidates:

The Farey fractions: For a fixed large integer N, we pick a
fraction uniformly at random from
FN := { a

b
: a ≤ b ≤ N, (a, b) = 1}

(Dynamical methods can be applied)

Reduced fractions with fixed denominator: For a fixed large
integer N, we pick a fraction uniformly at random from
{ a
N
: 1 ≤ a ≤ N : (a,N) = 1}

(we worked with this one - equidistribution and sieve theory).
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Considered objects

Distribution of
∑

i f (ai (α)),
∑

i (−1)i f (ai (α)) where f is a
well-behaving function and α = [0; a1, a2, . . .].

Prominent entities within this framework:

Gauss-Kuzmin statistics (f = 1[ai=m])
Sum of partial quotients (f (x) = x), related to the
Discrepancy of (nα)n∈N.
Alternating sum

∑
i (−1)iai (α), closely related to Dedekind

sums.
Maximal partial quotient f = 1[ai≥m], related to Zaremba’s
conjecture.
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Gauss-Kuzmin statistics

Theorem (Gauss/Kuzmin, 1800/1929)

Irrational case: lim
i→∞

P[ai = m] = log2

(
1 +

1

m(m + 2)

)
.

Theorem (Balladi,Vallée, 2015)

Farey:

r∑
i=1

1[ai=m] − log2

(
1 + 1

m(m+2)

)
logN

σm
√
logN

d→ N (0, 1).

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator:

lim
N→∞

1

φ(N)

π2

12 log 2 logN

∑
a∈Z∗

N

r∑
i=1

1[ai=m] = log2

(
1 +

1

m(m + 2)

)
.
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Dedekind sums

Theorem (Vardi, 1993)

Farey:
2π
∑r

i (−1)iai
logN

d→ Cauchy (0, 1).

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator: For any
0 < t ≤ (logN)C ,

P

∣∣∣∣∣∣
r∑

i=1

(−1)iai

∣∣∣∣∣∣ ≥ t logN

≪ 1

t
.

Same asymptotic tail estimate as in the Farey case.
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Sum of partial quotients

Theorem (Bettin, Drappeau, 2022)

Farey:

∑r
i=1 ai −

12
π2 logN log logN − γ logN

logN
d→ S1

(
π

6
, 1, 0

)
.

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator: For any
0 < t ≤ (logN)C ,

P

∣∣∣∣∣∣
r∑

i=1

ai −
12

π2
logN log logN

∣∣∣∣∣∣ ≥ t logN

≪ 1

t
.

Same asymptotic tail estimate as in the Farey case.
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P

∣∣∣∣∣∣
r∑

i=1

ai −
12

π2
logN log logN

∣∣∣∣∣∣ ≥ t logN

≪ 1

t
.

Corollary (Aistleitner, Borda, H., 2023+)

∀N ∈ N ∃a ∈ Z∗
N :

r∑
i

ai (a/N) ≤ 12

π2
logN log logN + O(logN).

Improves upon the (implicit) constants found by Larcher
(1986)/Rukavishnikova(2006).
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Maximal partial quotient

Theorem (Hensley, 1991)

Farey: lim
N→∞

P
[
max
i≤r

ai ≥ t logN

]
= 1− e−

12
π2t .

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator: For any
0 < t ≤ (logN)C ,

P
[
max
i≤r

ai ≥ t logN

]
≤ 12

π2t
+ O

(
(log logN)3

t logN

)
.

By 1− e−x = x + O(x2), same tail behaviour.
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Zaremba’s conjecture

Conjecture (Zaremba, 1972 (still open))

∀N ∈ N ∃a ∈ Z∗
N : max

i≤r
ai (a/N) ≤ 5.

Theorem (Aistleitner, Borda, H., 2023+)

∀N ∈ N ∃a ∈ Z∗
N : max

i≤r
ai (a/N) ≤ 12

π2
logN + O

(
(log logN)3

)
.

Best bound known so far for general N.
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The method - expected value

Let Sf
(
a
N

)
=
∑r

i=1 f (ai ) where a/N = [0; a1, . . . , ar ].

For given
b/k = [0; a1, a2, . . . , aj ], k < N, let
Im(b/k) = ([0; a1, a2, . . . , aj ,m], [0; a1, a2, . . . , aj ,m + 1]). Then
a/N ∈ Im(b/k) ⇔ a/N = [0; a1, a2, . . . , aj ,m, . . .].

⇒
∑
a∈Z∗

N

Sf

(
a

N

)
=
∑
k≤N

∑
b∈Z∗

k

∞∑
m=1

f (m)
∑
a∈Z∗

N

1Im(b/k)

(
a

N

)
.

We have (on average) λ(Im(b/k)) ≈ 1
k2 log2

(
1 + 1

m(m+2)

)
so if

{a/N : (a,N) = 1} is well uniformly distributed, everything is fine.
Problem: For k >

√
N, interval length ≤ 1

k2 < 1
N .
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k >
√
N - reflection by modular inverse

Define a∗ by aa∗ = (−1)r mod N (a 7→ a∗ is a bijection), If
a/N = [0; a1, . . . , ar ], then a∗/N = [0; ar , . . . , a1].

⇒
∑
a∈Z∗

N

Sf

(
a

N

)
≈ 2

∑
k≤

√
N

∑
b∈Z∗

k

∞∑
m=1

f (m)
∑
a∈Z∗

N

1Im(b/k)

(
a

N

)

For 1 ≤ k <
√
N, we have

1

φ(N)
#

{
a ∈ Z∗

N :
a

N
∈ Im(b/k)

}
≈ λ(Im(b/k))

≈ 1

k2
log2

(
1 +

1

m(m + 2)

)
by sieve methods/discrepancy estimates.
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Variance estimate

E

[
Sf

(
a

N

)2
]
≈ 1

φ(N)

1

8

∑
a∈Z∗

N

∑
i :qi−1<

√
N

f (ai (a/N))
∑
j≤i

f (aj(a/N))

︸ ︷︷ ︸
=Sf ( b

k ),
b
k
=[0;a1,...,ai ]

≈ 1

φ(N)

1

8

∑
1≤k<

√
N

∑
b∈Z∗

k

∑
a∈Z∗

N

wf

(
b

k
− a

N

)
Sf

(
b

k

)

∑
a∈Z∗

N

wf

(
b

k
− a

N

)
≈ φ(N)

k2

∫ ∞

0

f (x)

x2
dx , almost independent of b.

⇒≈ 1

8

∫ ∞

0

f (x)

x2
dx

∑
1≤k<

√
N

1

k2

∑
b∈Z∗

k

Sf

(
b

k

)
︸ ︷︷ ︸

Expected value w.r.t. k

.
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Concentration inequalities

For any 0 < t ≤ (logN)C ,

P

∣∣∣∣∣∣
r∑

i=1

ai −
12

π2
logN log logN

∣∣∣∣∣∣ ≥ t logN

≪ 1

t
.

Heavy-tailed distribution: First, remove those a/N where
maxi ai (a/N) ≥ (logN)C by Markov. Then apply
mean/variance + Chebyshev on f (x) = x1[x≤(logN)c ].

“Typical behaviour deviates from average behaviour”:
E[
∑r

i=1 ai ] ∼
6
π2 (logN)2 (Panov/Liehl, 1982/1983), but

concentration around 12
π2 logN log logN (median is much

smaller than the mean).
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Open questions

Is it possible to obtain those estimates on (short) intervals or
other measures than Unif (Z∗

N)? Say, given (X ,Y ) ⊂ [0, 1],
what statistics hold for a/N such that a/N ∈ (X ,Y ) or∑
a∈Z∗

N

Sf (a/N)g(a/N) where g is a smooth function?

What about the mixing property?
P[ai+n = m | ai = j ] ≈ P[ai+n = m] · P[ai = j ] for n → ∞?

Do the same limit laws as in the Farey setting hold without
the double-average? If so, do the center/scaling terms depend
on the arithmetic structure of N?
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Thanks for your attention!
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