The distribution of partial quotients with fixed denominator

Manuel Hauke

Graz University of Technology

July 7, 2023

Introduction - Continued fractions

- Every $\alpha \in \mathbb{R}$ has a (unique) continued fraction expansion $\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{i} \in \mathbb{N}$.

Introduction - Continued fractions

- Every $\alpha \in \mathbb{R}$ has a (unique) continued fraction expansion $\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{i} \in \mathbb{N}$.
- $\alpha \in \mathbb{Q}$, if and only if the expansion is finite, that is, $\alpha=\left[a_{0} ; a_{1}, \ldots, a_{r}\right]$ for some $r \in \mathbb{N}$.

Introduction - Continued fractions

- Every $\alpha \in \mathbb{R}$ has a (unique) continued fraction expansion $\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{i} \in \mathbb{N}$.
- $\alpha \in \mathbb{Q}$, if and only if the expansion is finite, that is, $\alpha=\left[a_{0} ; a_{1}, \ldots, a_{r}\right]$ for some $r \in \mathbb{N}$.
- $\pi=[3 ; 7,15,1,292,1,1,1,2, \ldots], e=$
$[2 ; 1,2,1,1,4,1,1, \ldots], \Phi=\frac{1+\sqrt{5}}{2}=[1 ; 1,1,1,1, \ldots]$.

Introduction - Continued fractions

- Every $\alpha \in \mathbb{R}$ has a (unique) continued fraction expansion

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{i} \in \mathbb{N} .
$$

- $\alpha \in \mathbb{Q}$, if and only if the expansion is finite, that is, $\alpha=\left[a_{0} ; a_{1}, \ldots, a_{r}\right]$ for some $r \in \mathbb{N}$.
- $\pi=[3 ; 7,15,1,292,1,1,1,2, \ldots], e=$
$[2 ; 1,2,1,1,4,1,1, \ldots], \Phi=\frac{1+\sqrt{5}}{2}=[1 ; 1,1,1,1, \ldots]$.
- The convergents $\frac{p_{i}}{q_{i}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{i}\right]$ approximate α by

$$
\frac{1}{\left(a_{i+1}+2\right) q_{i}^{2}} \leq(-1)^{i}\left(\alpha-\frac{p_{i}}{q_{i}}\right) \leq \frac{1}{a_{i+1} q_{i}^{2}}
$$

Introduction - Continued fractions

- Every $\alpha \in \mathbb{R}$ has a (unique) continued fraction expansion

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{i} \in \mathbb{N} .
$$

- $\alpha \in \mathbb{Q}$, if and only if the expansion is finite, that is, $\alpha=\left[a_{0} ; a_{1}, \ldots, a_{r}\right]$ for some $r \in \mathbb{N}$.
- $\pi=[3 ; 7,15,1,292,1,1,1,2, \ldots], e=$
$[2 ; 1,2,1,1,4,1,1, \ldots], \Phi=\frac{1+\sqrt{5}}{2}=[1 ; 1,1,1,1, \ldots]$.
- The convergents $\frac{p_{i}}{q_{i}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{i}\right]$ approximate α by

$$
\frac{1}{\left(a_{i+1}+2\right) q_{i}^{2}} \leq(-1)^{i}\left(\alpha-\frac{p_{i}}{q_{i}}\right) \leq \frac{1}{a_{i+1} q_{i}^{2}}
$$

- Theorem of Legendre: if $\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{2 q^{2}}$, then $\frac{p}{q}$ is a convergent of α.

Distribution of a_{k}, q_{k} for random irrationals

- Drawing an irrational uniformly at random from $[0,1)$, what is the probability that $a_{i}=m$?

Distribution of a_{k}, q_{k} for random irrationals

- Drawing an irrational uniformly at random from $[0,1)$, what is the probability that $a_{i}=m$?
- $\mathbb{P}\left[q_{k} \geq f(k)\right], \mathbb{P}\left[a_{i+n}=j \mid a_{i}=k\right], \mathbb{P}\left[\exists \infty\right.$ many $k: a_{k}>$ $f(k)], \mathbb{P}\left[\sum_{i=1}^{k} a_{k}>f(k)\right], \ldots$

Distribution of a_{k}, q_{k} for random irrationals

- Drawing an irrational uniformly at random from $[0,1)$, what is the probability that $a_{i}=m$?
- $\mathbb{P}\left[q_{k} \geq f(k)\right], \mathbb{P}\left[a_{i+n}=j \mid a_{i}=k\right], \mathbb{P}\left[\exists \infty\right.$ many $k: a_{k}>$ $f(k)], \mathbb{P}\left[\sum_{i=1}^{k} a_{k}>f(k)\right], \ldots$
- $\mathbb{P}=$ Lebesgue measure on $[0,1$). The statements above (and many more) can be solved with measure-theoretic/probabilistic methods.

Distribution for random irrationals

- Gauss-Kuzmin theorem:

$$
\mathbb{P}\left[a_{n}=m\right]=\log _{2}\left(1+\frac{1}{m(m+2)}\right)+O\left(e^{-c n}\right)
$$

Distribution for random irrationals

- Gauss-Kuzmin theorem:

$$
\mathbb{P}\left[a_{n}=m\right]=\log _{2}\left(1+\frac{1}{m(m+2)}\right)+O\left(e^{-c n}\right)
$$

- Mixing property:

$$
\mathbb{P}\left[a_{i}=j, a_{i+n}=k\right]=\mathbb{P}\left[a_{i}=j\right] \cdot \mathbb{P}\left[a_{i+n}=k\right]+O\left(e^{-c n}\right)
$$

Distribution for random irrationals

- Gauss-Kuzmin theorem:

$$
\mathbb{P}\left[a_{n}=m\right]=\log _{2}\left(1+\frac{1}{m(m+2)}\right)+O\left(e^{-c n}\right)
$$

- Mixing property:

$$
\mathbb{P}\left[a_{i}=j, a_{i+n}=k\right]=\mathbb{P}\left[a_{i}=j\right] \cdot \mathbb{P}\left[a_{i+n}=k\right]+O\left(e^{-c n}\right)
$$

- The distribution of $\left(a_{i}\right)_{i \in \mathbb{N}}$ is very close to i.i.d. variables $\left(X_{i}\right)_{i \in \mathbb{N}}$ where $\mathbb{P}\left[X_{i}=m\right]=\log _{2}\left(1+\frac{1}{m(m+2)}\right) \Rightarrow$ many theorems from classical probability hold (laws of large numbers, central limit theorems, LDPs, ...).

Diophantine behaviour of random rationals

- Question: What can be transferred to a random rational? What is meant by random rational? Two natural candidates:

Diophantine behaviour of random rationals

- Question: What can be transferred to a random rational? What is meant by random rational? Two natural candidates:
- The Farey fractions: For a fixed large integer N, we pick a fraction uniformly at random from

$$
\mathcal{F}_{N}:=\left\{\frac{a}{b}: a \leq b \leq N,(a, b)=1\right\}
$$

(Dynamical methods can be applied)

Diophantine behaviour of random rationals

- Question: What can be transferred to a random rational? What is meant by random rational? Two natural candidates:
- The Farey fractions: For a fixed large integer N, we pick a fraction uniformly at random from

$$
\mathcal{F}_{N}:=\left\{\frac{a}{b}: a \leq b \leq N,(a, b)=1\right\}
$$

(Dynamical methods can be applied)

- Reduced fractions with fixed denominator: For a fixed large integer N, we pick a fraction uniformly at random from $\left\{\frac{a}{N}: 1 \leq a \leq N:(a, N)=1\right\}$
(we worked with this one - equidistribution and sieve theory).

Considered objects

- Distribution of $\sum_{i} f\left(a_{i}(\alpha)\right), \sum_{i}(-1)^{i} f\left(a_{i}(\alpha)\right)$ where f is a well-behaving function and $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$.

Considered objects

- Distribution of $\sum_{i} f\left(a_{i}(\alpha)\right), \sum_{i}(-1)^{i} f\left(a_{i}(\alpha)\right)$ where f is a well-behaving function and $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$.
- Prominent entities within this framework:
- Gauss-Kuzmin statistics $\left(f=\mathbb{1}_{\left[a_{i}=m\right]}\right)$
- Sum of partial quotients $(f(x)=x)$, related to the Discrepancy of $(n \alpha)_{n \in \mathbb{N}}$.
- Alternating sum $\sum_{i}(-1)^{i} a_{i}(\alpha)$, closely related to Dedekind sums.
- Maximal partial quotient $f=\mathbb{1}_{\left[a_{i} \geq m\right]}$, related to Zaremba's conjecture.

Gauss-Kuzmin statistics

Theorem (Gauss/Kuzmin, 1800/1929)

$$
\text { Irrational case: } \lim _{i \rightarrow \infty} \mathbb{P}\left[a_{i}=m\right]=\log _{2}\left(1+\frac{1}{m(m+2)}\right) \text {. }
$$

Gauss-Kuzmin statistics

Theorem (Gauss/Kuzmin, 1800/1929)

Irrational case: $\lim _{i \rightarrow \infty} \mathbb{P}\left[a_{i}=m\right]=\log _{2}\left(1+\frac{1}{m(m+2)}\right)$.

Theorem (Balladi, Vallée, 2015)

$$
\text { Farey: } \frac{\sum_{i=1}^{r} \mathbb{1}_{\left[a_{i}=m\right]}-\log _{2}\left(1+\frac{1}{m(m+2)}\right) \log N}{\sigma_{m} \sqrt{\log N}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Gauss-Kuzmin statistics

Theorem (Gauss/Kuzmin, 1800/1929)

$$
\text { Irrational case: } \lim _{i \rightarrow \infty} \mathbb{P}\left[a_{i}=m\right]=\log _{2}\left(1+\frac{1}{m(m+2)}\right)
$$

Theorem (Balladi, Vallée, 2015)

$$
\text { Farey: } \frac{\sum_{i=1}^{r} \mathbb{1}_{\left[a_{i}=m\right]}-\log _{2}\left(1+\frac{1}{m(m+2)}\right) \log N}{\sigma_{m} \sqrt{\log N}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator:

$$
\lim _{N \rightarrow \infty} \frac{1}{\varphi(N)} \frac{\pi^{2}}{12 \log 2 \log N} \sum_{a \in \mathbb{Z}_{N}^{*}} \sum_{i=1}^{r} \mathbb{1}_{\left[a_{i}=m\right]}=\log _{2}\left(1+\frac{1}{m(m+2)}\right) .
$$

Dedekind sums

Theorem (Vardi, 1993)

$$
\text { Farey: } \frac{2 \pi \sum_{i}^{r}(-1)^{i} a_{i}}{\log N} \xrightarrow{d} \text { Cauchy }(0,1) \text {. }
$$

Dedekind sums

Theorem (Vardi, 1993)

$$
\text { Farey: } \frac{2 \pi \sum_{i}^{r}(-1)^{i} a_{i}}{\log N} \xrightarrow{d} \text { Cauchy }(0,1) \text {. }
$$

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator: For any $0<t \leq(\log N)^{C}$,

$$
\mathbb{P}\left[\left|\sum_{i=1}^{r}(-1)^{i} a_{i}\right| \geq t \log N\right] \ll \frac{1}{t} .
$$

- Same asymptotic tail estimate as in the Farey case.

Sum of partial quotients

Theorem (Bettin, Drappeau, 2022)

$$
\text { Farey: } \frac{\sum_{i=1}^{r} a_{i}-\frac{12}{\pi^{2}} \log N \log \log N-\gamma \log N}{\log N} \xrightarrow{d} S_{1}\left(\frac{\pi}{6}, 1,0\right) .
$$

Sum of partial quotients

Theorem (Bettin, Drappeau, 2022)

$$
\text { Farey: } \frac{\sum_{i=1}^{r} a_{i}-\frac{12}{\pi^{2}} \log N \log \log N-\gamma \log N}{\log N} \xrightarrow{d} S_{1}\left(\frac{\pi}{6}, 1,0\right) .
$$

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator: For any $0<t \leq(\log N)^{C}$,

$$
\mathbb{P}\left[\left|\sum_{i=1}^{r} a_{i}-\frac{12}{\pi^{2}} \log N \log \log N\right| \geq t \log N\right] \ll \frac{1}{t} .
$$

- Same asymptotic tail estimate as in the Farey case.

$$
\mathbb{P}\left[\left|\sum_{i=1}^{r} a_{i}-\frac{12}{\pi^{2}} \log N \log \log N\right| \geq t \log N\right] \ll \frac{1}{t} .
$$

Corollary (Aistleitner, Borda, H., 2023+)
$\forall N \in \mathbb{N} \exists a \in \mathbb{Z}_{N}^{*}: \sum_{i}^{r} a_{i}(a / N) \leq \frac{12}{\pi^{2}} \log N \log \log N+O(\log N)$.

- Improves upon the (implicit) constants found by Larcher (1986)/Rukavishnikova(2006).

Maximal partial quotient

Theorem (Hensley, 1991)

Farey: $\lim _{N \rightarrow \infty} \mathbb{P}\left[\max _{i \leq r} a_{i} \geq t \log N\right]=1-e^{-\frac{12}{\pi^{2} t}}$.

Maximal partial quotient

Theorem (Hensley, 1991)

$$
\text { Farey: } \lim _{N \rightarrow \infty} \mathbb{P}\left[\max _{i \leq r} a_{i} \geq t \log N\right]=1-e^{-\frac{12}{\pi^{2} t}}
$$

Theorem (Aistleitner, Borda, H., 2023+)

Reduced fractions with fixed denominator: For any $0<t \leq(\log N)^{C}$,

$$
\mathbb{P}\left[\max _{i \leq r} a_{i} \geq t \log N\right] \leq \frac{12}{\pi^{2} t}+O\left(\frac{(\log \log N)^{3}}{t \log N}\right)
$$

- By $1-e^{-x}=x+O\left(x^{2}\right)$, same tail behaviour.

Zaremba's conjecture

Conjecture (Zaremba, 1972 (still open))

$$
\forall N \in \mathbb{N} \exists a \in \mathbb{Z}_{N}^{*}: \max _{i \leq r} a_{i}(a / N) \leq 5
$$

Zaremba's conjecture

Conjecture (Zaremba, 1972 (still open))

$$
\forall N \in \mathbb{N} \exists a \in \mathbb{Z}_{N}^{*}: \max _{i \leq r} a_{i}(a / N) \leq 5
$$

Theorem (Aistleitner, Borda, H., 2023+)

$$
\forall N \in \mathbb{N} \exists a \in \mathbb{Z}_{N}^{*}: \max _{i \leq r} a_{i}(a / N) \leq \frac{12}{\pi^{2}} \log N+O\left((\log \log N)^{3}\right)
$$

- Best bound known so far for general N.

The method - expected value

$$
\text { Let } S_{f}\left(\frac{a}{N}\right)=\sum_{i=1}^{r} f\left(a_{i}\right) \text { where } a / N=\left[0 ; a_{1}, \ldots, a_{r}\right] \text {. }
$$

The method - expected value

$$
\begin{aligned}
& \text { Let } S_{f}\left(\frac{a}{N}\right)=\sum_{i=1}^{r} f\left(a_{i}\right) \text { where } a / N=\left[0 ; a_{1}, \ldots, a_{r}\right] \text {. For given } \\
& b / k=\left[0 ; a_{1}, a_{2}, \ldots, a_{j}\right], k<N \text {, let } \\
& I_{m}(b / k)=\left(\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m\right],\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m+1\right]\right) \text {. Then } \\
& a / N \in I_{m}(b / k) \Leftrightarrow a / N=\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m, \ldots\right] \text {. }
\end{aligned}
$$

The method - expected value

$$
\begin{aligned}
& \text { Let } S_{f}\left(\frac{a}{N}\right)=\sum_{i=1}^{r} f\left(a_{i}\right) \text { where } a / N=\left[0 ; a_{1}, \ldots, a_{r}\right] \text {. For given } \\
& b / k=\left[0 ; a_{1}, a_{2}, \ldots, a_{j}\right], k<N \text {, let } \\
& I_{m}(b / k)=\left(\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m\right],\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m+1\right]\right) \text {. Then } \\
& a / N \in I_{m}(b / k) \Leftrightarrow a / N=\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m, \ldots\right] \text {. }
\end{aligned}
$$

$$
\Rightarrow \sum_{a \in \mathbb{Z}_{N}^{*}} S_{f}\left(\frac{a}{N}\right)=\sum_{k \leq N} \sum_{b \in \mathbb{Z}_{k}^{*}} \sum_{m=1}^{\infty} f(m) \sum_{a \in \mathbb{Z}_{N}^{*}} \mathbb{1}_{I_{m}(b / k)}\left(\frac{a}{N}\right) .
$$

The method - expected value

Let $S_{f}\left(\frac{a}{N}\right)=\sum_{i=1}^{r} f\left(a_{i}\right)$ where $a / N=\left[0 ; a_{1}, \ldots, a_{r}\right]$. For given $b / k=\left[0 ; a_{1}, a_{2}, \ldots, a_{j}\right], k<N$, let $I_{m}(b / k)=\left(\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m\right],\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m+1\right]\right)$. Then $a / N \in I_{m}(b / k) \Leftrightarrow a / N=\left[0 ; a_{1}, a_{2}, \ldots, a_{j}, m, \ldots\right]$.

$$
\Rightarrow \sum_{a \in \mathbb{Z}_{N}^{*}} S_{f}\left(\frac{a}{N}\right)=\sum_{k \leq N} \sum_{b \in \mathbb{Z}_{k}^{*}} \sum_{m=1}^{\infty} f(m) \sum_{a \in \mathbb{Z}_{N}^{*}} \mathbb{1}_{I_{m}(b / k)}\left(\frac{a}{N}\right) .
$$

We have (on average) $\lambda\left(I_{m}(b / k)\right) \approx \frac{1}{k^{2}} \log _{2}\left(1+\frac{1}{m(m+2)}\right)$ so if $\{a / N:(a, N)=1\}$ is well uniformly distributed, everything is fine.
Problem: For $k>\sqrt{N}$, interval length $\leq \frac{1}{k^{2}}<\frac{1}{N}$.

$k>\sqrt{N}$ - reflection by modular inverse

Define a^{*} by $a a^{*}=(-1)^{r} \bmod N\left(a \mapsto a^{*}\right.$ is a bijection), If $a / N=\left[0 ; a_{1}, \ldots, a_{r}\right]$, then $a^{*} / N=\left[0 ; a_{r}, \ldots, a_{1}\right]$.

$k>\sqrt{N}$ - reflection by modular inverse

Define a^{*} by $a a^{*}=(-1)^{r} \bmod N\left(a \mapsto a^{*}\right.$ is a bijection), If $a / N=\left[0 ; a_{1}, \ldots, a_{r}\right]$, then $a^{*} / N=\left[0 ; a_{r}, \ldots, a_{1}\right]$.

$$
\Rightarrow \sum_{a \in \mathbb{Z}_{N}^{*}} S_{f}\left(\frac{a}{N}\right) \approx 2 \sum_{k \leq \sqrt{N}} \sum_{b \in \mathbb{Z}_{k}^{*}} \sum_{m=1}^{\infty} f(m) \sum_{a \in \mathbb{Z}_{N}^{*}} \mathbb{1}_{I_{m}(b / k)}\left(\frac{a}{N}\right)
$$

$k>\sqrt{N}$ - reflection by modular inverse

Define a^{*} by $a a^{*}=(-1)^{r} \bmod N\left(a \mapsto a^{*}\right.$ is a bijection), If $a / N=\left[0 ; a_{1}, \ldots, a_{r}\right]$, then $a^{*} / N=\left[0 ; a_{r}, \ldots, a_{1}\right]$.

$$
\Rightarrow \sum_{a \in \mathbb{Z}_{N}^{*}} S_{f}\left(\frac{a}{N}\right) \approx 2 \sum_{k \leq \sqrt{N}} \sum_{b \in \mathbb{Z}_{k}^{*}} \sum_{m=1}^{\infty} f(m) \sum_{a \in \mathbb{Z}_{N}^{*}} \mathbb{1}_{I_{m}(b / k)}\left(\frac{a}{N}\right)
$$

For $1 \leq k<\sqrt{N}$, we have

$$
\begin{aligned}
\frac{1}{\varphi(N)} \#\left\{a \in \mathbb{Z}_{N}^{*}: \frac{a}{N} \in I_{m}(b / k)\right\} & \approx \lambda\left(I_{m}(b / k)\right) \\
& \approx \frac{1}{k^{2}} \log _{2}\left(1+\frac{1}{m(m+2)}\right)
\end{aligned}
$$

by sieve methods/discrepancy estimates.

Variance estimate

$$
\begin{aligned}
\mathbb{E}\left[S_{f}\left(\frac{a}{N}\right)^{2}\right] & \approx \frac{1}{\varphi(N)} \frac{1}{8} \sum_{a \in \mathbb{Z}_{N}^{*}} \sum_{i: a_{i-1}<\sqrt{N}} f\left(a_{i}(a / N)\right) \underbrace{\sum_{j \leq i} f\left(a_{j}(a / N)\right)}_{=S_{f}\left(\frac{b}{k}\right), \frac{b}{k}=\left[0 ; a_{1}, \ldots, a_{i}\right]} \\
& \approx \frac{1}{\varphi(N)} \frac{1}{8} \sum_{1 \leq k<\sqrt{N}} \sum_{b \in \mathbb{Z}_{k}^{*}} \sum_{a \in \mathbb{Z}_{N}^{*}} w_{f}\left(\frac{b}{k}-\frac{a}{N}\right) S_{f}\left(\frac{b}{k}\right)
\end{aligned}
$$

Variance estimate

$$
\begin{aligned}
\mathbb{E}\left[S_{f}\left(\frac{a}{N}\right)^{2}\right] & \approx \frac{1}{\varphi(N)} \frac{1}{8} \sum_{a \in \mathbb{Z}_{N}^{*}} \sum_{i: q_{i-1}<\sqrt{N}} f\left(a_{i}(a / N)\right) \underbrace{\sum_{j \leq i} f\left(a_{j}(a / N)\right)}_{=S_{f}\left(\frac{b}{k}\right), \frac{b}{k}=\left[0 ; a_{1}, \ldots, a_{i}\right]} \\
& \approx \frac{1}{\varphi(N)} \frac{1}{8} \sum_{1 \leq k<\sqrt{N}} \sum_{b \in \mathbb{Z}_{k}^{*}} \sum_{a \in \mathbb{Z}_{N}^{*}} w_{f}\left(\frac{b}{k}-\frac{a}{N}\right) S_{f}\left(\frac{b}{k}\right)
\end{aligned}
$$

$\sum_{a \in \mathbb{Z}_{N}^{*}} w_{f}\left(\frac{b}{k}-\frac{a}{N}\right) \approx \frac{\varphi(N)}{k^{2}} \int_{0}^{\infty} \frac{f(x)}{x^{2}} \mathrm{~d} x, \quad$ almost independent of b.

$$
\Rightarrow \approx \frac{1}{8} \int_{0}^{\infty} \frac{f(x)}{x^{2}} \mathrm{~d} x \sum_{1 \leq k<\sqrt{N}} \frac{1}{k^{2}} \underbrace{\sum_{b \in \mathbb{Z}_{k}^{*}} S_{f}\left(\frac{b}{k}\right)}_{\text {Expected value w.r.t. } k}
$$

Concentration inequalities

For any $0<t \leq(\log N)^{C}$,

$$
\mathbb{P}\left[\left|\sum_{i=1}^{r} a_{i}-\frac{12}{\pi^{2}} \log N \log \log N\right| \geq t \log N\right] \ll \frac{1}{t}
$$

- Heavy-tailed distribution: First, remove those a/ N where $\max _{i} a_{i}(a / N) \geq(\log N)^{C}$ by Markov. Then apply mean/variance + Chebyshev on $f(x)=x \mathbb{1}_{\left[x \leq(\log N)^{c}\right]}$.

Concentration inequalities

For any $0<t \leq(\log N)^{C}$,

$$
\mathbb{P}\left[\left|\sum_{i=1}^{r} a_{i}-\frac{12}{\pi^{2}} \log N \log \log N\right| \geq t \log N\right] \ll \frac{1}{t}
$$

- Heavy-tailed distribution: First, remove those a / N where $\max _{i} a_{i}(a / N) \geq(\log N)^{C}$ by Markov. Then apply mean/variance + Chebyshev on $f(x)=x \mathbb{1}_{\left[x \leq(\log N)^{c}\right]}$.
- "Typical behaviour deviates from average behaviour": $\mathbb{E}\left[\sum_{i=1}^{r} a_{i}\right] \sim \frac{6}{\pi^{2}}(\log N)^{2} \quad($ Panov/Liehl, 1982/1983), but concentration around $\frac{12}{\pi^{2}} \log N \log \log N$ (median is much smaller than the mean).

Open questions

- Is it possible to obtain those estimates on (short) intervals or other measures than $\operatorname{Unif}\left(\mathbb{Z}_{N}^{*}\right)$? Say, given $(X, Y) \subset[0,1]$, what statistics hold for a / N such that $a / N \in(X, Y)$ or $\sum_{a \in \mathbb{Z}_{N}^{*}} S_{f}(a / N) g(a / N)$ where g is a smooth function?

Open questions

- Is it possible to obtain those estimates on (short) intervals or other measures than $\operatorname{Unif}\left(\mathbb{Z}_{N}^{*}\right)$? Say, given $(X, Y) \subset[0,1]$, what statistics hold for a / N such that $a / N \in(X, Y)$ or $\sum_{a \in \mathbb{Z}_{N}^{*}} S_{f}(a / N) g(a / N)$ where g is a smooth function?
- What about the mixing property?

$$
\mathbb{P}\left[a_{i+n}=m \mid a_{i}=j\right] \approx \mathbb{P}\left[a_{i+n}=m\right] \cdot \mathbb{P}\left[a_{i}=j\right] \text { for } n \rightarrow \infty ?
$$

Open questions

- Is it possible to obtain those estimates on (short) intervals or other measures than $\operatorname{Unif}\left(\mathbb{Z}_{N}^{*}\right)$? Say, given $(X, Y) \subset[0,1]$, what statistics hold for a / N such that $a / N \in(X, Y)$ or $\sum_{a \in \mathbb{Z}_{N}^{*}} S_{f}(a / N) g(a / N)$ where g is a smooth function?
- What about the mixing property?

$$
\mathbb{P}\left[a_{i+n}=m \mid a_{i}=j\right] \approx \mathbb{P}\left[a_{i+n}=m\right] \cdot \mathbb{P}\left[a_{i}=j\right] \text { for } n \rightarrow \infty ?
$$

- Do the same limit laws as in the Farey setting hold without the double-average? If so, do the center/scaling terms depend on the arithmetic structure of N ?

Thanks for your attention!

