Le programme de Langlands appliqué à la théorie de Galois inverse

Adrián Zenteno

Centro de Investigación en Matemáticas, A.C. México

XXXII^{es} Journées Arithmétiques

03 juillet 2023

ロシィタシィミシィミシ ミ つへへ XXXII^{es} Journées Arithmétiques 03 juillet

Inverse Galois problem over \mathbb{Q}

From Galois Theory, we know that

finite Galois extension $K/\mathbb{Q} \rightsquigarrow$ finite group $G := Gal(K/\mathbb{Q})$

Question (Inverse Galois Problem)

Let G be a finite group. Does there exist a finite Galois extension K/\mathbb{Q} such that $Gal(K/\mathbb{Q}) \cong G$?

Known cases:

- $G = S_n, A_n$ (Hilbert 1892),
- G a solvable group (Shafarevich 1958),
- G a sporadic group except M_{23} (Matzat, Thompson,... 80's),
- G = G(𝔽_{ℓ^s}) a finite Lie type group, when s is small as compared to the rank of G (Matzat, Malle,... 80's).

(日)

How to address the problem when *s* is large?

Let's consider a Galois representation

$$\overline{
ho}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_n(\overline{\mathbb{F}}_\ell)$$

- S As Gal(Q/Q) is compact, Im(p) is a finite matrix subgroup of GL_n(𝔽_{ℓ^s}) for some integer s > 0.
- S As Ker(p̄) is an open normal subgroup of Gal(Q̄/Q), there is a finite Galois extension K/Q such that

$$Ker(\overline{
ho}) \cong Gal(\overline{\mathbb{Q}}/K)$$

Then, combining 28

 $\mathit{Im}(\overline{\rho})\cong \mathit{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})/\mathit{Ker}(\overline{\rho})\cong \mathit{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})/\mathit{Gal}(\overline{\mathbb{Q}}/\mathit{K})\cong \mathit{Gal}(\mathit{K}/\mathbb{Q})$

- 本間下 本臣下 本臣下 三臣

Maximally induced representations

- Let n = 2m be a positive even integer and p, q > n be distinct odd primes such that the order of q modulo p is n.
- \mathbb{Q}_{q^n} be the unique unramified extension of \mathbb{Q}_q of degree *n* and recall

 $\mathbb{Q}_{q^n}^{\times} \simeq \langle q \rangle imes \mu_{q^n-1} imes U_1$

Definition

Let ℓ be a prime distinct from p and q. A character

$$\chi_{\boldsymbol{q}}:\mathbb{Q}_{\boldsymbol{q}^n}\longrightarrow\overline{\mathbb{Q}}_{\ell}^{\times}$$

is of *S*-type (*resp. of O*-type) and order *p* if satisfies the following conditions:

Maximally induced representations

By Class Field Theory

Definition

Let ℓ be a prime distinct from p and q. A character

 $\chi_{q}: Gal(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q^{n}}) \longrightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$

is of **S-type (resp. of O-type)** and order p if satisfies the following conditions:

We can construct

$$\rho_{q} := \operatorname{Ind}_{\operatorname{Gal}(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q})}^{\operatorname{Gal}(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q})} \chi_{q} : \operatorname{Gal}(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q}) \longrightarrow \operatorname{GL}_{n}(\overline{\mathbb{Q}}_{\ell})$$

A 回 > A 回 > A 回 >

We can construct

$$\rho_{q} = \operatorname{Ind}_{Gal(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q^{n}})}^{Gal(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q})} \chi_{q} : Gal(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q}) \longrightarrow GL_{n}(\overline{\mathbb{Q}}_{\ell})$$

It can be proved that

- If χ_q is of S-type, ρ_q is irreducible and symplectic in the sense that it can be conjugated to take values in $Sp_n(\overline{\mathbb{Q}}_{\ell})$.
- If χ_q is of O-type, ρ_q is irreducible and orthogonal in the sense that it can be conjugated to take values in SO_n(<u>Q</u>_ℓ).
- In fact, if $\alpha : Gal(\overline{\mathbb{Q}}_q/\mathbb{Q}_q) \longrightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$ is an unramified character, then the residual representation

$$\overline{\rho}_{q} \otimes \overline{\alpha} : \operatorname{Gal}(\overline{\mathbb{Q}}_{q}/\mathbb{Q}_{q}) \longrightarrow \operatorname{GL}_{n}(\overline{\mathbb{F}}_{\ell})$$

(the semi-simplification of the reduction mod ℓ) is also irreducible.

Definition

We say that a Galois representation

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_n(\overline{\mathbb{Q}}_\ell)$$

is maximally induced of S-type (resp. of O-type) at q of order p if

$$\rho|_{D_q} \simeq \rho_q \otimes \alpha$$

where ρ_q is constructed from a character χ_q of S-type (resp. of O-type) of order p and α is an unramified character as above.

Theorem

lf

$$ho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_n(\overline{\mathbb{Q}}_\ell)$$

is a maximally induced Galois representation

• of S-type at q of order p, then the image of $\overline{\rho}^{proj}$ is equal to

 $PSp_n(\mathbb{F}_{\ell^s})$ or $PGSp_n(\mathbb{F}_{\ell^s})$

for some integer s > 0.

resp. if ρ is of O-type at q of order p, then the image of p̄^{proj} is equal to
 PΩ[±]_n(𝔅_{ℓ^s}), PSO[±]_n(𝔅_{ℓ^s}), PO[±]_n(𝔅_{ℓ^s}) or PGO[±]_n(𝔅_{ℓ^s})

for some integer s > 0.

Question

Are there maximally induced Galois representations?

Adrián Zenteno

Applying Langlands program

• Let's start with χ_q of S-type, then

$$\rho_q: \operatorname{Gal}(\overline{\mathbb{Q}}_q/\mathbb{Q}_q) \longrightarrow \operatorname{Sp}_n(\overline{\mathbb{Q}}_\ell).$$

By Local Langlands Correspondence (H 2000, HT 2001)

 $\rho_q \rightsquigarrow \tau_q$ a supercuspidal representation of $SO_{n+1}(\overline{\mathbb{Q}}_q)$.

 By globalization of supercuspidal representations of simple quasi-split algebraic groups (KLS 2008), there is

$$\tau = \otimes_{\mathbf{v}} \tau_{\mathbf{v}}$$

a cuspidal automorphic representation of $SO_{n+1}(\mathbb{A}_{\mathbb{Q}})$ such that if v = q then $\tau_v = \tau_q$.

イロト 不得下 イヨト イヨト 二日

Applying Langlands program

By Local Langlands Correspondence (H 2000, HT 2001)

 $\rho_q \rightsquigarrow \tau_q$ a supercuspidal representation of $SO_{n+1}(\overline{\mathbb{Q}}_q)$.

By globalization of supercuspidal representations of simple quasi-split algebraic groups (KLS 2008), there is

$$\tau = \otimes_{\mathbf{v}} \tau_{\mathbf{v}}$$

a cuspidal automorphic representation of $SO_{n+1}(\mathbb{A}_{\mathbb{Q}})$ such that if v = q then $\tau_v = \tau_q$.

• By Langlands Functoriality (A 2013) there is a regular algebraic, essentially self-dual, cuspidal automorphic representation $\pi = \bigotimes_v \pi_v$ of $GL_n(\mathbb{A}_{\mathbb{Q}})$ such that $\tau_q \cong \pi_q$.

Applying Langlands program

By globalization of supercuspidal representations of simple quasi-split algebraic groups (KLS 2008), there is

$$\tau = \otimes_{\mathbf{v}} \tau_{\mathbf{v}}$$

a cuspidal automorphic representation of $SO_{n+1}(\mathbb{A}_{\mathbb{Q}})$ such that if v = q then $\tau_v = \tau_q$.

- By Langlands Functoriality (A 2013) there is a regular algebraic, essentially self-dual, cuspidal automorphic representation $\pi = \bigotimes_{\nu} \pi_{\nu}$ of $GL_n(\mathbb{A}_{\mathbb{Q}})$ such that $\tau_q \cong \pi_q$.
- Sy Global Langlands correspondence (S 2011, CH 2013), there is a self-dual Galois representation

$$\rho_{\pi,\ell}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GSp}_n(\overline{\mathbb{Q}}_\ell)$$

such that

$$\rho_{\pi,\ell}|_{D_q} \simeq \rho_q \otimes \alpha$$

for some unramified character $\boldsymbol{\alpha}$ as above.

Adrián Zenteno

人口 医水理 医水体 医下颌

Similarly

If we start with χ_q of O-type, we obtain

$$\rho_q : Gal(\overline{\mathbb{Q}}_q/\mathbb{Q}_q) \longrightarrow SO_n(\overline{\mathbb{Q}}_\ell).$$

By Local Langlands Correspondence (H 2000, HT 2001)

 $\rho_q \rightsquigarrow \tau_q$ a supercuspidal representation of $SO_n(\overline{\mathbb{Q}}_q)$.

By globalization of supercuspidal representations of simple quasi-split algebraic groups (KLS 2008), there is

$$\tau = \otimes_{\mathbf{v}} \tau_{\mathbf{v}}$$

a cuspidal automorphic representation of $SO_n(\mathbb{A}_{\mathbb{Q}})$ such that if v = q then $\tau_v = \tau_q$.

イロト 不得下 イヨト イヨト 二日

- By Langlands Functoriality (A 2013) there is a regular algebraic, essentially self-dual, cuspidal automorphic representation $\pi = \bigotimes_{v} \pi_{v}$ of $GL_{n}(\mathbb{A}_{\mathbb{Q}})$ such that $\tau_{q} \cong \pi_{q}$.
- Sy Global Langlands correspondence (S 2011, HT 2013), there is a self-dual Galois representation

$$\rho_{\pi,\ell}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GO}_n(\overline{\mathbb{Q}}_\ell)$$

such that

$$\rho_{\pi,\ell}|_{D_q} \simeq \rho_q \otimes \alpha$$

for some unramified character $\boldsymbol{\alpha}$ as above.

Consequences

Let ℓ be a (fixed) prime.

- By Chebotarev's Density Theorem, there are infinitely many ways to choose the couple of primes (p, q).
- Then, we can construct infinitely many regular algebraic, essentially self-dual, cuspidal automorphic representations

$\{\pi_i\}_{i\in\mathbb{N}}$

of $GL_n(\mathbb{A}_{\mathbb{Q}})$ as above.

• Hence, there exists a family of Galois representations

$$\{\rho_{\pi_i,\ell}\}_{i\in\mathbb{N}}$$

of *S*-type (resp. O-type) such that the size of the image of $\overline{\rho}_{\pi_i,\ell}^{proj}$ is unbounded for running *i*, because we can choose *p* as large as we please so that elements of larger and larger orders appear in the inertia images.

Consequences

Corollary

Let ℓ be an odd prime. Then, there are infinitely many integers s>0 such that

• (AdRDSW 2015) at least one of the following groups:

 $\{PSp_{2m}(\mathbb{F}_{\ell^s}), PGSp_{2m}(\mathbb{F}_{\ell^s})\}$

can be realized as a Galois group over \mathbb{Q} .

• (Z 2021) at least one of the following groups:

 $\{P\Omega_{2m}^{\pm}(\mathbb{F}_{\ell^{s}}), PSO_{2m}^{\pm}(\mathbb{F}_{\ell^{s}}), PO_{2m}^{\pm}(\mathbb{F}_{\ell^{s}}), PGO_{2m}^{\pm}(\mathbb{F}_{\ell^{s}})\}$

can be realized as a Galois group over \mathbb{Q} .

More cases solved

Theorem (KLS 2010)

Let ℓ be an odd prime. Then, there are infinitely many integers s>0 such that

• at least one of the following groups:

$$\{\Omega_{2m+1}(\mathbb{F}_{\ell^s}), SO_{2m+1}(\mathbb{F}_{\ell^s})\}$$

can be realized as a Galois group over \mathbb{Q} .

• $G_2(\mathbb{F}_{\ell^s})$ can be realized as a Galois group over \mathbb{Q} .

Thank you for your attention! Merci pour votre attention!

э

イロト イボト イヨト イヨト