On singular moduli for higher rank Drinfeld modules

Chien-Hua Chen

National Center for Theoretical Sciences (NCTS), Taiwan

JA 2023

Singular moduli for elliptic curves

Modular j-function:

$$
j(\tau)=\frac{1}{q}+744+196884 q+\cdots
$$

, where $q=e^{2 \pi i \tau}$.

- A singular modulus is $j(\tau)$ where $\tau \in \mathbb{H}$ an imaginary quadratic irrational number.
- $j(\tau)=j\left(E_{\tau}\right)$, where $\left.E_{\tau}=\mathbb{C} /<\tau, 1\right\rangle$ is an elliptic curve with CM
- $j(\tau)$ is an algebraic integer.

Question: Is there any description on prime factorization of $j(\tau)$?

Singular moduli for elliptic curves

Theorem (Gross-Zagier, 1985)

Let d_{1}, d_{2} be two fundamental discriminant of imaginary quadratic fields. Asuume further that d_{1} and d_{2} are coprime to each other. Let w_{1}, w_{2} be the number of roots of unity in the quadratic orders of discriminant d_{1}, d_{2}, respectively. Define

$$
J\left(d_{1}, d_{2}\right):=\left(\prod_{\left[\tau_{1}\right],\left[\tau_{2}\right] \text { with } \operatorname{disc}\left(\tau_{i}\right)=d_{i}}\left(j\left(\tau_{1}\right)-j\left(\tau_{2}\right)\right)\right)^{\frac{4}{w_{1} w_{2}}} .
$$

Then we have

$$
J\left(d_{1}, d_{2}\right)^{2}= \pm \prod_{x \in \mathbb{Z} \text { and } n, n^{\prime} \in \mathbb{Z}>0} \text { with } x^{2}+4 n n^{\prime}=d_{1} d_{2} .
$$

Here $\epsilon\left(n^{\prime}\right)$ is an explicit map defined in terms of Legendre symbols.

Hilbert class polynomial

- $K:=\mathbb{Q}(\sqrt{D})$ imaginary quadratic field
- $\left.E_{\tau}=\mathbb{C} /<1, \tau\right\rangle:=$ an elliptic curve with CM by \mathcal{O}_{K}
- Hilbert class polynomial is defined to be

$$
H_{D}(x)=\prod_{\frac{\left\{\tau \mid E_{\tau} \text { has } \subset M\right. \text { by }}{S \mathcal{O}_{K}(\mathbb{Z}\}}}\left(x-j\left(E_{\tau}\right)\right) \in \mathbb{Z}[x] .
$$

- Constant term of $H_{D}(x)$ is a special case of Gross-Zagier formula.

Drinfeld module analogy

- Let $q=p^{e}$ be a prime power. Consider

$$
A=\mathbb{F}_{q}[T] \subset F=\mathbb{F}_{q}(T) \subset F_{\infty}=\mathbb{F}_{q}\left(\left(\frac{1}{T}\right)\right) \subset \mathbb{C}_{\infty}=\widehat{F_{\infty}} .
$$

- $\Lambda:=A$-lattice of rank r in \mathbb{C}_{∞}. i.e. a discrete subgroup $\Lambda \subset \mathbb{C}_{\infty}$ which is finitely generated A-submodule of \mathbb{C}_{∞} of rank r.
- Define the exponential map from \mathbb{C}_{∞} to \mathbb{C}_{∞},

$$
e_{\Lambda}(x):=x \prod_{0 \neq \lambda \in \Lambda}\left(1-\frac{x}{\lambda}\right)
$$

- There is a map $\phi^{\wedge}: A \rightarrow \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a, \mathbb{C}_{\infty}}\right)=\mathbb{C}_{\infty}\{\tau\}$ such that

$$
e_{\Lambda}(a x)=\phi_{a}^{\wedge}\left(e_{\Lambda}(x)\right) \text { for all } a \in A \text {. }
$$

- ϕ^{\wedge} is a Drinfeld module over \mathbb{C}_{∞} of rank r.

Drinfeld module analogy, rank-2 case

- $q:=$ an odd prime power, $A:=\mathbb{F}_{q}[T]$, and $F:=\mathbb{F}_{q}(T)$.
- $K:=F(\sqrt{d})$ imaginary quadratic extension over F. Here d is the discriminant of a quadratic polynomial $a x^{2}+b x+c$ over A with a, b, c relatively prime.

Theorem (Dorman, 1991)

Denote

$$
J(d):=\prod_{\{\tau 1}(j(\tau)-j(\rho)),
$$

where ρ is the Drinfeld module $\rho_{T}=T+\tau^{2}$. Let \mathfrak{p} be a nonzero prime ideal of A with monic generator π, then

$$
\operatorname{ord}_{\mathfrak{p}} J(d)=\frac{q+1}{2} \sum_{m \in A} \sum_{n \geqslant 1} R\left(\frac{d-u m^{2}}{\pi^{2 n-1}}\right)
$$

Here $R(a):=\#$ of ideals of $\mathbb{F}_{q^{2}}[T]$ having norm equal to the ideal $\mathfrak{a}=(a)$ of A.

Drinfeld module analogy, prime rank case

- $q=p^{e}$ an odd prime power, r be a prime number, and $(p, r)=1$.
- $A:=\mathbb{F}_{q}[T]$, and $F:=\mathbb{F}_{q}(T)$.
- Consider the A-field L together with the natural embedding $\gamma: A \hookrightarrow L$. Let $\phi: A \rightarrow L\{\tau\}=\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a, L}\right)$ be a rank- r Drinfeld module over L. Can characterize ϕ by

$$
\phi_{T}=T+g_{1} \tau+\cdots+g_{r} \tau^{r}, \text { where } g_{i} \in L, \text { and } g_{r} \neq 0
$$

- Define the ring of homomorphism between two rank- r Drinfeld module ϕ and ψ over L to be
$\operatorname{Hom}(\phi, \psi)=\operatorname{Hom}_{\bar{L}}(\phi, \psi):=\left\{u \in \bar{L}\{\tau\} \mid u \circ \phi_{a}=\psi_{a} \circ u, \quad \forall a \in A\right\}$.
- $J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}:=\frac{\prod_{1 \leq i \leq t-1} g_{i}^{\delta_{i}}}{g_{r}^{\delta_{r}}}$ a basic J-invariant. Here δ_{i} 's satisfy

$$
\text { (i) } \delta_{1}(q-1)+\delta_{2}\left(q^{2}-1\right)+\cdots+\delta_{r-1}\left(q^{r-1}-1\right)=\delta_{r}\left(q^{r}-1\right) \text {. }
$$

(ii) $0 \leqslant \delta_{i} \leqslant \frac{q^{r}-1}{q^{5} \cdot \operatorname{cod}(\underline{i}, r)-1}$ for all $1 \leqslant i \leqslant r-1$; g.c.d. $\left(\delta_{1}, \cdots, \delta_{r}\right)=1$.

Theorem (Potemine, 1998)

$$
M^{r}(1)=\operatorname{Spec} A\left[\left\{J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}\right\}\right]
$$

is the coarse moduli scheme of Drinfeld A-modules of rank r.

Main result

- Let $K:=F(s)$ be a degree- r imaginary extension over F, with K / F a normal extension and its ring of integers $\mathcal{O}_{K}=A[s]$.
- $\mathfrak{p}=(\pi)$ is a finite place of F with degree $\operatorname{deg}_{T}(\pi)$ prime to r.
- Let ϕ be a rank- r Drinfeld module over \mathbb{C}_{∞} with CM by \mathcal{O}_{K}, i.e. $\operatorname{End}(\phi) \cong \mathcal{O}_{K}$. Fix an isomorphism, then compose with the derivative map ∂, get an embedding $\iota: \mathcal{O}_{K} \hookrightarrow \mathbb{C}_{\infty}$.
- $[\phi]:=$ isomorphism class over \mathbb{C}_{∞} of "normalizable" rank- r Drinfeld module ϕ of generic characteristic with CM by \mathcal{O}_{K}. Denote $\operatorname{CM}\left(\mathcal{O}_{K}, \iota\right)$ to be the set of $[\phi]^{\prime} s$

$$
J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}:=\prod_{[\phi] \in \operatorname{CM}\left(\mathcal{O}_{K}, \iota\right)} J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}(\phi)
$$

Main result

Theorem (Chen, 2023 preprint)

$$
\operatorname{ord}_{\mathfrak{p}}\left(J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}\right) \geqslant \frac{(q+1)(q-1)}{q^{r}-1} \sum_{n \geqslant 1} \# S_{n}
$$

Here

$$
\# S_{n}=\#\left\{M_{\left(x_{1}, \cdots, x_{r}\right)} \in \mathcal{M} \mid x_{i} \equiv 0 \quad \bmod \pi^{n-1} \text { for } 2 \leqslant i \leqslant r\right.
$$ char. poly of $M_{\left(x_{1}, \cdots, x_{r}\right)}=$ min. poly of $\left.s\right\}$

$$
\mathcal{M}=\left\{\left.\left(\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{r-1} \\
\pi \sigma\left(x_{r-1}\right) & \sigma\left(x_{0}\right) & \cdots & \sigma\left(x_{r-2}\right) \\
\vdots & & \ddots & \vdots \\
\pi \sigma^{r-1}\left(x_{1}\right) & \cdots & \pi \sigma^{r-1}\left(x_{r-1}\right) & \sigma^{r-1}\left(x_{0}\right)
\end{array}\right) \right\rvert\,\left(x_{i}\right) \in \mathbb{F}_{q^{r}}[T]\right\}
$$

and $\sigma \in \operatorname{Gal}\left(\mathbb{F}_{q^{r}}(T) / \mathbb{F}_{q}(T)\right)$ is the Frobenius map $\alpha \mapsto \alpha^{q}$.

- Compare both sides of the inequality

$$
\operatorname{ord}_{\mathfrak{p}}\left(J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}\right) \geqslant \frac{(q+1)(q-1)}{q^{r}-1} \sum_{n \geqslant 1} \# S_{n}
$$

LHS depends on the choice of basic J-invariant, while the RHS is independent of the choice of J. Hence RHS can be viewed as an overall lower bound among choices of basic J-invariant.

- There is a criteria on when will the equality happen:

Corollary

The equality in the Theorem happens when the following two conditions are satisfied:
(a) $J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}=J^{(1,0, \cdots, 0, q)}=\frac{g_{1} \cdot g_{r-1}^{q}}{\Delta}$.
(b) For each representative ϕ of $[\phi] \in C M\left(\mathcal{O}_{K}, \iota\right)$ defined over W. If $\phi \not \approx \varphi$ $\bmod \mu^{i}$ for some $i \geqslant 1$, then both $g_{1} \not \equiv 0$ and $g_{r-1} \not \equiv 0 \bmod \mu^{i}$.

- $q=p^{e}$ odd prime power with $q \equiv 1 \bmod 3$. Let
- $K:=F(\sqrt[3]{\Delta})$ over $F=\mathbb{F}_{q}(T)$, where $\Delta \in A:=\mathbb{F}_{q}[T]$ is cubic-free with T-degree prime to 3 . Suppose the $\mathcal{O}_{K}=A[\sqrt[3]{\Delta}]$.
- From our main reuslt, we have

$$
\operatorname{ord}_{\mathfrak{p}}\left(J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}\right) \geqslant \frac{(q+1)(q-1)}{q^{3}-1} \sum_{n \geqslant 1} \# S_{n},
$$

and $\# S_{n}=\#$ of $\left(x_{0}, x_{1}^{\prime}, x_{2}^{\prime}\right) \in \mathbb{F}_{q^{3}}[T]^{3}$ satisfy equations below:

$$
\left\{\begin{array}{l}
\operatorname{Tr}\left(x_{0}\right)=0 \\
\operatorname{Tr}\left(x_{0} \sigma\left(x_{0}\right)\right)=-\frac{1}{2} \operatorname{Tr}\left(x_{0}^{2}\right)=\pi^{2 n+1} \operatorname{Tr}\left(\mathrm{x}_{1}^{\prime} \sigma\left(\mathrm{x}_{2}^{\prime}\right)\right) \\
\operatorname{Norm}\left(x_{0}\right)+\pi^{3 n-2} \operatorname{Norm}\left(x_{1}^{\prime}\right)+\pi^{3 n-1} \operatorname{Norm}\left(x_{2}^{\prime}\right) \\
-\pi^{2 n-1} \operatorname{Tr}\left(x_{0} \sigma\left(x_{1}^{\prime}\right) \sigma^{2}\left(x_{2}^{\prime}\right)\right)=\Delta \tag{3}
\end{array}\right.
$$

Example: under the condition $\Delta=\pi=T$

- $\left\{(0, \beta, 0) \mid \beta \in \mathbb{F}_{q^{3}}[T]\right.$ with $\left.\left.\operatorname{Norm}(\beta)=1\right)\right\}$ satisfy equation (1) to (3) when $n=1$.
$\# S_{1} \geqslant \#\left\{(0, \beta, 0) \mid \beta \in \mathbb{F}_{q^{3}}[T]\right.$ with $\left.\left.\operatorname{Norm}(\beta)=1\right)\right\}=q^{2}+q+1$.
The equality on the right hand side comes from the fact that Norm : $\mathbb{F}_{q^{3}}^{*} \rightarrow \mathbb{F}_{q}^{*}$ is surjective.
- get

$$
\begin{aligned}
\nu_{\mathfrak{p}}\left(J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \delta_{2}\right)}\right) & \geqslant \frac{(q+1)(q-1)}{q^{3}-1} \sum_{n \geqslant 1} \# S_{n} \\
& \geqslant \frac{(q+1)(q-1)\left(q^{2}+q+1\right)}{\left(q^{3}-1\right)} \\
& =q+1
\end{aligned}
$$

Example: under the condition $\Delta=T(T+1)$ and $\pi=T$

- Then the set
$\mathcal{B}:=\left\{(0, \beta, \gamma) \mid \beta, \gamma \in \mathbb{F}_{q^{3}}[T], \operatorname{Nm}(\beta)=\operatorname{Nm}(\gamma)=1\right.$ and $\left.\operatorname{Tr}(\beta \sigma(\gamma))=0\right\}$
satisfy equation (1) to (3) when $n=1$.
- We have that \mathcal{B} contains
$\{(0, \beta, 1) \mid \operatorname{Norm}(\beta)=1, \operatorname{Tr}(\beta)=0\} \sqcup\{(0,1, \gamma) \mid \operatorname{Norm}(\gamma)=1, \operatorname{Tr}(\gamma)=0\}$
- Katz's estimation on Soto-Andrade sum:

The number $N_{3}(0,1)$ of elements in $\mathbb{F}_{q^{3}}$ with norm equal to 1 and trace equal to 0 is bounded by

$$
\left|N_{3}(0,1)-\frac{q^{2}-1}{q-1}\right| \leqslant \text { g.c.d. }(3, q-1) \sqrt{q} .
$$

Thus $\# \mathcal{B} \geqslant 2(q+1-$ g.c.d $(3, q-1) \sqrt{q})$

- Get

$$
\nu_{\mathfrak{p}}\left(J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \delta_{2}\right)}\right) \geqslant \frac{(q+1)(q-1)}{q^{3}-1} \sum_{n \geqslant 1} \# S_{n} \geqslant \frac{(q+1)(q-1)}{q^{3}-1} \cdot \# \mathcal{B}
$$

Strategy for proof of the main result

Reduce to counting isomorphisms:

$$
\nu\left(J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}\right) \geqslant \frac{q+1}{q^{r}-1} \sum_{[\phi] \in \operatorname{CM}\left(\mathcal{O}_{K}, \iota\right)} \sum_{n \geqslant 1} \# \operatorname{Iso}_{W / \mu^{n} W}(\phi, \varphi)
$$

(1)

Reduce to counting endomorphisms on $\varphi_{T}=T+\tau^{r}$:

$$
\nu\left(J_{\mathcal{O}_{K}}^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}\right) \geqslant \frac{(q+1)(q-1)}{q^{r}-1} \sum_{n \geqslant 1} \# S_{n}
$$

$S_{n}:=\left\{\begin{array}{c}\alpha_{0} \in \operatorname{End}_{W / \mu^{n} W}(\varphi): \text { char. poly. of } \alpha_{0} \in A\left[\alpha_{0}\right]=\text { min. poly. of } s, \\ \text { and } \partial\left(\alpha_{0}\right) \equiv \iota(s) \bmod \mu^{n}\end{array}\right\}$
(2)

Matrix realization reduce to counting certain type of $r \times r$ matrices over $\mathbb{F}_{q^{r}}[T]$ with specified characteristic polynomial.

Strategy: Reduce to counting isomorphism

- $H_{K}:=$ Hilbert class field of K.
- Fix a place \mathfrak{P} of H_{K} above \mathfrak{p}.
- $\widehat{H}_{K, \mathfrak{P}}^{n r}:=$ the completion of $H_{K, \mathfrak{P}}^{n r}$, the maximal unramified extension over the local field of H_{K} at \mathfrak{P}.
- $W:=$ the discrete valuation ring of $\widehat{H}_{K, \mathfrak{F}}^{n r}$
- fix a uniformizer μ of W, with normalized valuation ν

Write $\phi_{T}=T+g_{1} \tau+\cdots+g_{r-1} \tau^{r-1}+\tau^{r} \in W\{\tau\}$, and ϕ^{\prime} in tems of $g_{i}^{\prime} \tau^{i}$.
Assume that $\phi \cong \phi^{\prime}$ after reduction modulo μ^{k} for some $k \in \mathbb{Z}_{\geqslant 1}$, but not isomorphic after reduction modulo μ^{k+1}.
If $g_{1}^{\delta_{1}} \cdots \cdots g_{r-1}^{\delta_{r-1}}=0$ in W. We separate $\{1,2, \cdots, r-1\}$ into

$$
\mathcal{A}:=\left\{1 \leqslant i_{\ell} \leqslant r-1 \mid g_{i_{\ell}}=0\right\} \text { and } \mathcal{B}:=\{1, \cdots, r-1\}-\mathcal{A} .
$$

Then

$$
\begin{aligned}
& \nu\left(J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}(\phi)-J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}\left(\phi^{\prime}\right)\right)=\nu\left(\prod_{1 \leqslant i \leqslant r-1} g_{i}^{\delta_{i}}-\prod_{1 \leqslant i \leqslant r-1} g_{i}^{\prime \delta_{i}}\right) \\
& =\nu\left[\left(c^{q-1} g_{1}+\mu^{k} u_{1}\right)^{\delta_{1}} \cdots \cdots\left(c^{q^{r-1}-1} g_{r-1}+\mu^{k} u_{r-1}\right)^{\delta_{r-1}}\right] \\
& \geqslant k \cdot\left(\sum_{j \in \mathcal{A}} \delta_{j}\right)
\end{aligned}
$$

Strategy: Reduce to counting isomorphism

- Since $\phi \cong \phi^{\prime} \bmod \mu^{i}$ for $1 \leqslant i \leqslant k$ and $\phi \not \equiv \phi^{\prime} \bmod \mu^{k+1}$, get

$$
\begin{aligned}
& \# \operatorname{Iso}_{W / \mu^{i} W}\left(\phi, \phi^{\prime}\right)=\# \operatorname{Aut}_{W / \mu^{i} W}(\phi) \\
= & \#\left\{\mathbb{F}_{q^{r}}^{*} \bigcap_{1 \leqslant j \leqslant r-1} \mathbb{F}_{q^{j}}^{*} \mid g_{j} \not \equiv 0 \quad \bmod \mu^{i}\right\} \text { for } 1 \leqslant i \leqslant k
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{n \geqslant 1} \# \operatorname{Iso}_{W / \mu^{n} W}\left(\phi, \phi^{\prime}\right) \\
= & \sum_{i=1}^{k} g . c . d .\left(q^{r}-1, q^{j}-1 \mid g_{j} \not \equiv 0 \bmod \mu^{i} \text { for } 1 \leqslant j \leqslant r-1\right) \\
\leqslant & k \cdot\left(q^{r}-1\right)
\end{aligned}
$$

Lemma

Restrict to our case where ϕ has $C M$ by \mathcal{O}_{K}, and $\phi^{\prime}=\varphi_{T}:=T+\tau^{r}$. Get

$$
\nu\left(J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}(\phi)-J^{\left(\delta_{1}, \cdots, \delta_{r-1}\right)}(\varphi)\right) \geqslant \frac{q+1}{q^{r}-1} \sum_{n \geqslant 1} \# \operatorname{Iso}_{W / \mu^{n} W}(\phi, \varphi)
$$

Strategy: Reduce to counting endomorphisms

Theorem

There is a ($q-1$)-to-1 correspondence between $\operatorname{Iso}_{W / \mu^{n} W}(\phi, \varphi)$ and the set $S_{n}:=$
$\left\{\begin{array}{c}\alpha_{0} \in \operatorname{End}_{W / \mu^{n} W}(\varphi): \text { char. poly. of } \alpha_{0} \in A\left[\alpha_{0}\right]=\text { min. poly. of } s, \\ \text { and } \partial\left(\alpha_{0}\right) \equiv \iota(s) \bmod \mu^{n}\end{array}\right\}$
Here the charateristic polynomial of α_{0} is obtained by viewing $\alpha_{0} \in A\left[\alpha_{0}\right]$ as "left multiplication by α_{0} ". And minimal polynomial of s is obtained from the field extension $k=F(s)$ over F.

Sketch of proof

(\Rightarrow) Since ϕ over W has CM by $\mathcal{O}_{K}=A[s]$. We may view ϕ as a Drinfeld \mathcal{O}_{K}-module of rank 1 over W. Thus $\phi_{s} \in \operatorname{End}{ }_{W}(\phi)$ is well-defined. Taking reduction modulo μ^{n}, we get $\bar{\phi}_{s} \in \operatorname{End}_{W / \mu^{n} W}(\phi)$.
Now for any $w \in \operatorname{Iso}_{W / \mu^{n} W}(\varphi, \phi)$, we consider the composition of maps:

$$
s_{w}:=w^{-1} \circ \bar{\phi}_{s} \circ w \in \operatorname{End}_{w / \mu^{n}} w(\varphi)
$$

The map s_{w} lies in S_{n}

Sketch of proof

Claim

($\bar{\varphi} \equiv \varphi \bmod \mu^{n}, \alpha_{0}$) over $W / \mu^{n} W$ can be lifted to (ψ, α) over W, where
$(\Leftarrow) \quad$ (a) $\psi \in \operatorname{CM}\left(\mathcal{O}_{K}, \iota\right)$.
(b) $\psi \equiv \varphi \bmod \mu^{n}$.
(c) $\alpha \in \operatorname{End} w(\psi)$, and $\alpha \equiv \alpha_{0} \bmod \mu^{n}$.

See for instance the case $n=1$.

- Set $\left.\varphi\right|_{A} \equiv \varphi \bmod \mu$, and $\underline{\varphi}_{S} \equiv \alpha_{0} \bmod \mu$. This makes $\left(\varphi, \alpha_{0}\right)$ over $W / \bar{\mu} \mathrm{W}$ a rank-1 Drinfeld $\overline{\mathcal{O}}_{K}$-module $\underline{\varphi}$ over $W / \mu W$.
- Drinfeld module analogue of Serre-Tate lifting theorem \Rightarrow Let $\mathfrak{q}:=\mu \cap \mathcal{O}_{K}$. It is enough to construct a lifting of $\underline{\varphi}\left[\mathfrak{q}^{\infty}\right]$, the $\mathcal{O}_{\mathfrak{q}}$-divisible group of $\underline{\varphi}$, to W.
- There is a one-to-one correspondence between " $\mathcal{O}_{\mathfrak{q}}$-divisible group of rank-1" and "Formal $\mathcal{O}_{\mathfrak{q}}$-module of height-1".
- For height-1 formal $\mathcal{O}_{\mathfrak{q}}$-modules. There is a lifting, unique up to W-isomorphism, to W.
Note: The above process work when viewing $\left(\varphi, \alpha_{0}\right)$ as rank-1 Drinfeld \mathcal{O}-module, the \mathcal{O} is a maximal order.

Matrix realization

At here, we further assume
(a) $r \geqslant 3$ is a prime number
(b) $\varphi_{T}=T+\tau^{r}$ has good supersingular reduction at \mathfrak{p}. This is equivalent to say that the monic generator π of \mathfrak{p} has degree $\operatorname{deg}_{T}(\pi)$ prime to r.
For instance we look at the set $S_{1} \subset \operatorname{End}_{W / \mu W}(\varphi)$

- The endomorphism algebra $D:=\operatorname{End}(\underline{\varphi}) \otimes_{A} F$ has Hasse invariant

$$
\operatorname{Inv}_{\nu}(D)=\left\{\begin{array}{cc}
\frac{1}{r}, & \nu=\mathfrak{p} \\
\frac{-1}{r}, & \nu=\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

- $\operatorname{End}_{W / \mu W}(\varphi) \otimes_{A} \mathcal{O}_{H}=\operatorname{End}(\underline{\varphi}) \otimes_{A} \mathcal{O}_{H} \hookrightarrow D \otimes_{F} H \simeq M_{r}(H)$.
- Compare with matrix realization of the cyclic algebra

$$
(H / F, \sigma, \pi):=H\left[\tau, \tau^{-1}\right] /\left(\tau^{r}-\pi\right) H\left[\tau, \tau^{-1}\right]
$$

Here $H:=\mathbb{F}_{q^{r}}(T)$, and $\sigma \in \operatorname{Gal}(H / F)$ is the Frobenius element. The multiplication in $H\left[\tau, \tau^{-1}\right]$ is defined by

$$
\alpha \tau^{n} \cdot \beta \tau^{m}=\alpha \sigma^{n}(\beta) \tau^{n+m}
$$

Matrix realization

- The matrix realization of $(H / F, \sigma, \pi)$ in $M_{r}(H)$ is the following

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{r-1} \\
\pi \sigma\left(x_{r-1}\right) & \sigma\left(x_{0}\right) & \cdots & \sigma\left(x_{r-2}\right) \\
\vdots & & \ddots & \vdots \\
\pi \sigma^{r-1}\left(x_{1}\right) & \cdots & \pi \sigma^{r-1}\left(x_{r-1}\right) & \sigma^{r-1}\left(x_{0}\right)
\end{array}\right) \right\rvert\,\left(x_{0}, \cdots, x_{r-1}\right) \in H\right\}
$$

- The embedding $\operatorname{End}_{W / \mu W}(\varphi) \hookrightarrow M_{r}(H)$ is optimal. i.e. $\operatorname{End}_{W / \mu W}(\varphi)$ is equal to \mathcal{M} up to conjugation in $M_{r}\left(\mathcal{O}_{H}\right)$, where \mathcal{M} is the set

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{r-1} \\
\pi \sigma\left(x_{r-1}\right) & \sigma\left(x_{0}\right) & \cdots & \sigma\left(x_{r-2}\right) \\
\vdots & & \ddots & \vdots \\
\pi \sigma^{r-1}\left(x_{1}\right) & \cdots & \pi \sigma^{r-1}\left(x_{r-1}\right) & \sigma^{r-1}\left(x_{0}\right)
\end{array}\right) \right\rvert\,\left(x_{i}\right)_{0 \leqslant i \leqslant r-1} \in \mathcal{O}_{H}\right\}
$$

- From definition of S_{1} and the matrix realization

$$
S_{1}=\left\{M_{\left(x_{0}, \cdots, x_{r-1}\right)} \in \mathcal{M} \mid \text { char. poly of } M=\text { min. poly of } s\right\} .
$$

Matrix realization

Matrix realization for S_{n} when $n \geqslant 2$:
Case1. When \mathfrak{p} is unramified in K / F

Proposition

As \mathcal{O}_{H}-modules we have

$$
\operatorname{End}_{W / \mu^{n} W}(\varphi)=\mathcal{O}_{H}+\pi^{n-1} \operatorname{End}(\underline{\varphi})
$$

Thus we get
$\operatorname{End}_{W / \mu^{n} W}(\varphi)=\left\{M_{\left(x_{0}, \cdots, x_{r-1}\right)} \in \mathcal{M} \mid x_{i} \equiv 0 \quad \bmod \pi^{n-1}\right.$ for $\left.1 \leqslant i \leqslant r-1\right\}$.
Case2. When \mathfrak{p} is ramified in K / F

Proposition

$\operatorname{End}_{W / \mu^{n} W}(\varphi)=\left\{M_{\left(x_{0}, \cdots, x_{r-1}\right)} \in \mathcal{M} \mid x_{i} \equiv 0 \quad \bmod \pi^{z-1}\right.$ for $\left.1 \leqslant i \leqslant r-1\right\}$, where $z:=\left\lfloor\frac{n+r-1}{r}\right\rfloor$.

Thank you.

