Investigating divisibility properties of quotient sequences derived from Lucas and elliptic divisibility sequences

Aram Tangboonduangjit

Mahidol University International College, Mahidol University,
Nakhon Pathom, Thailand
Journées Arithmétiques 2023
July 3, 2023

Table of Contents

(1) Introduction

- Lucas Sequences
- Elliptic Divisibility Sequences - Recurrence Definition
- Elliptic Divisibility Sequences - Elliptic Curve Based Definition

2 Arithmetic Properties of the Lucas Sequences
(3) Arithmetic Properties of the Elliptic Divisibility Sequences
4. Main Results
(5) Summing Up

Lucas Sequences

Definition 1 (Lucas Sequence)

Let P and Q be relatively prime integers. The Lucas sequence is defined by

- $U_{0}=0, U_{1}=1$, and
- $U_{n}=P \cdot U_{n-1}-Q \cdot U_{n-2}$ for $n \geq 2$.

Definition 1 (Lucas Sequence)

Let P and Q be relatively prime integers. The Lucas sequence is defined by

- $U_{0}=0, U_{1}=1$, and
- $U_{n}=P \cdot U_{n-1}-Q \cdot U_{n-2}$ for $n \geq 2$.
- $P=1, Q=-1 \Longrightarrow$ the sequence of the Fibonacci numbers $\left(F_{n}\right)_{n \geq 0}$:

$$
0, \quad 1, \quad 1, \quad 2, \quad 3, \quad 5, \quad 8, \quad 13, \quad \ldots
$$

Definition 1 (Lucas Sequence)

Let P and Q be relatively prime integers. The Lucas sequence is defined by

- $U_{0}=0, U_{1}=1$, and
- $U_{n}=P \cdot U_{n-1}-Q \cdot U_{n-2}$ for $n \geq 2$.
- $P=1, Q=-1 \Longrightarrow$ the sequence of the Fibonacci numbers $\left(F_{n}\right)_{n \geq 0}$:

$$
0, \quad 1, \quad 1, \quad 2, \quad 3, \quad 5, \quad 8, \quad 13, \quad \ldots
$$

- $P=3, Q=2 \Longrightarrow$ the sequence of the Mersenne numbers $\left(M_{n}\right)_{n \geq 0}$:

$$
0, \quad 1, \quad 3, \quad 7, \quad 15, \quad 31, \quad 63, \quad 127,
$$

Definition 1 (Lucas Sequence)

Let P and Q be relatively prime integers. The Lucas sequence is defined by

- $U_{0}=0, U_{1}=1$, and
- $U_{n}=P \cdot U_{n-1}-Q \cdot U_{n-2}$ for $n \geq 2$.
- $P=1, Q=-1 \Longrightarrow$ the sequence of the Fibonacci numbers $\left(F_{n}\right)_{n \geq 0}$:

$$
0, \quad 1, \quad 1, \quad 2, \quad 3, \quad 5, \quad 8, \quad 13, \quad \ldots
$$

- $P=3, Q=2 \Longrightarrow$ the sequence of the Mersenne numbers $\left(M_{n}\right)_{n \geq 0}$:

$$
0, \quad 1, \quad 3, \quad 7, \quad 15, \quad 31, \quad 63, \quad 127, \quad \ldots
$$

- In general,

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta},
$$

where α and β are the zeroes of the characteristic polynomial $p(x)=x^{2}-P x+Q$.

Elliptic Divisibility Sequences - Recurrence Definition

Definition 2 (Elliptic Divisibility Sequence (EDS))

A sequence $\left(h_{n}\right)_{n \geq 0}$ is said to be an elliptic divisibility sequence if

- $h_{m+n} h_{m-n}=h_{m+1} h_{m-1} h_{n}^{2}-h_{n+1} h_{n-1} h_{m}^{2}$ for all $m \geq n \geq 0$, and
- $m\left|n \Longrightarrow h_{m}\right| h_{n}$.

Definition 2 (Elliptic Divisibility Sequence (EDS))

A sequence $\left(h_{n}\right)_{n \geq 0}$ is said to be an elliptic divisibility sequence if

- $h_{m+n} h_{m-n}=h_{m+1} h_{m-1} h_{n}^{2}-h_{n+1} h_{n-1} h_{m}^{2}$ for all $m \geq n \geq 0$, and
- $m\left|n \Longrightarrow h_{m}\right| h_{n}$.

For example,

- The sequence $(n)_{n \geq 0}$ of nonnegative integers:

$$
0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad \ldots
$$

Definition 2 (Elliptic Divisibility Sequence (EDS))

A sequence $\left(h_{n}\right)_{n \geq 0}$ is said to be an elliptic divisibility sequence if

- $h_{m+n} h_{m-n}=h_{m+1} h_{m-1} h_{n}^{2}-h_{n+1} h_{n-1} h_{m}^{2}$ for all $m \geq n \geq 0$, and
- $m\left|n \Longrightarrow h_{m}\right| h_{n}$.

For example,

- The sequence $(n)_{n \geq 0}$ of nonnegative integers:

$$
0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad \ldots
$$

- The sequence $\left((-1)^{(n-1)(n-2) / 2} F_{n}\right)$ where F_{n} is the nth Fibonacci number:

$$
0, \quad 1, \quad 1, \quad-2, \quad-3, \quad 5, \quad 8, \quad-13, \quad-21, \quad 34, \quad \ldots
$$

Definition 2 (Elliptic Divisibility Sequence (EDS))

A sequence $\left(h_{n}\right)_{n \geq 0}$ is said to be an elliptic divisibility sequence if

- $h_{m+n} h_{m-n}=h_{m+1} h_{m-1} h_{n}^{2}-h_{n+1} h_{n-1} h_{m}^{2}$ for all $m \geq n \geq 0$, and
- $m\left|n \Longrightarrow h_{m}\right| h_{n}$.

For example,

- The sequence $(n)_{n \geq 0}$ of nonnegative integers:

$$
0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad \ldots
$$

- The sequence $\left((-1)^{(n-1)(n-2) / 2} F_{n}\right)$ where F_{n} is the nth Fibonacci number:

$$
0, \quad 1, \quad 1, \quad-2, \quad-3, \quad 5, \quad 8, \quad-13, \quad-21, \quad 34, \quad \ldots
$$

$\left(F_{n}\right)$ satisfies the following identity:

$$
F_{m+n} F_{m-n}=(-1)^{n+1}\left(F_{m+1} F_{m-1} F_{n}^{2}-F_{n+1} F_{n-1} F_{m}^{2}\right)
$$

Elliptic Divisibility Sequences - Elliptic Curve Based Definition

- Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ with integer coefficients.
- Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ with integer coefficients.
- Rational points on this curves form a group $E(\mathbb{Q})$.

credit: J. Silverman, K. Stange

credit: J. Silverman, K. Stange

Adding Points on Elliptic Curves (cont.)

credit: J. Silverman, K. Stange

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$, $6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that
- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$, $6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that

$$
B_{1}=1,
$$

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$, $6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that

$$
B_{1}=1, \quad B_{2}=1,
$$

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$, $6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that

$$
B_{1}=1, \quad B_{2}=1, \quad B_{3}=3,
$$

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$, $6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that

$$
B_{1}=1, \quad B_{2}=1, \quad B_{3}=3, \quad B_{4}=11,
$$

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$, $6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that

$$
B_{1}=1, \quad B_{2}=1, \quad B_{3}=3, \quad B_{4}=11, \quad B_{5}=38,
$$

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$,
$6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that

$$
B_{1}=1, \quad B_{2}=1, \quad B_{3}=3, \quad B_{4}=11, \quad B_{5}=38, \quad B_{6}=249,
$$

- Let P be a non-identity point in $E(\mathbb{Q})$ and n a positive integer. Consider $P+P+\cdots+P=n P$.
- The coordinate point $(x(n P), y(n P))$ on the curve can be expressed by

$$
(x(n P), y(n P))=\left(\frac{A_{n P}}{B_{n P}^{2}}, \frac{C_{n P}}{B_{n P}^{3}}\right),
$$

where $A_{n P}$ and $C_{n P}$ are integers, $B_{n P}$ is a positive integer, and the fractions are in lowest terms.

- The sequence $\left(B_{n P}\right)_{n \geq 1}$ so obtained is called an elliptic divisibility sequence.
- For example, with the curve $y^{2}+y=x^{3}+x^{2}-2 x$ and $P=(0,0)$ we obtain $P=\left(\frac{0}{1}, \frac{0}{1}\right)$, $2 P=\left(\frac{3}{1}, \frac{5}{1}\right), 3 P=\left(-\frac{11}{9}, \frac{28}{27}\right), 4 P=\left(\frac{114}{121},-\frac{267}{1331}\right), 5 P=\left(-\frac{2739}{1444},-\frac{77033}{54872}\right)$,
$6 P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)$, so that

$$
B_{1}=1, \quad B_{2}=1, \quad B_{3}=3, \quad B_{4}=11, \quad B_{5}=38, \quad B_{6}=249,
$$

Table of Contents

(1) Introduction

- Lucas Sequences
- Elliptic Divisibility Sequences - Recurrence Definition
- Elliptic Divisibility Sequences - Elliptic Curve Based Definition
(2) Arithmetic Properties of the Lucas Sequences
(3) Arithmetic Properties of the Elliptic Divisibility Sequences

4. Main Results
(5) Summing Up

Lemma 3 (Sanna)

Let p be a prime such that $p \nmid Q$. Then, for each positive integer n,

$$
\nu_{p}\left(U_{n}\right)= \begin{cases}\nu_{p}(n)+\nu_{p}\left(U_{p}\right)-1, & p \mid D \text { and } p \mid n ; \\ 0, & p \mid D \text { and } p \nmid n ; \\ \nu_{p}(n)+\nu_{p}\left(U_{p \tau(p)}\right)-1, & p \nmid D, \tau(p) \mid n, \text { and } p \mid n ; \\ \nu_{p}\left(U_{\tau(p)}\right), & p \nmid D, \tau(p) \mid n, \text { and } p \nmid n ; \\ 0, & p \nmid D \text { and } \tau(p) \nmid n,\end{cases}
$$

where $\tau(p)=$ least positive integer such that $p \mid U_{\tau(p)}$.

Lemma 4 (Panraksa, T)
Let $n, k \geq 1$ and p a prime factor of U_{k} such that $p \nmid Q$. Then

- if (i) p is odd, or (ii) $p=2$ and k is even, or (iii) $p=2$ and n is odd, we have

$$
\nu_{p}\left(U_{k n}\right)=\nu_{p}(n)+\nu_{p}\left(U_{k}\right) ;
$$

Lemma 4 (Panraksa, T)

Let $n, k \geq 1$ and p a prime factor of U_{k} such that $p \nmid Q$. Then

- if (i) p is odd, or (ii) $p=2$ and k is even, or (iii) $p=2$ and n is odd, we have

$$
\nu_{p}\left(U_{k n}\right)=\nu_{p}(n)+\nu_{p}\left(U_{k}\right) ;
$$

- if k and D are odd and n is even, we have

$$
\nu_{2}\left(U_{k n}\right)=\nu_{2}(n)+\nu_{2}\left(U_{k}\right)+\nu_{2}\left(U_{2 \tau(2)}\right)-\nu_{2}\left(U_{\tau(2)}\right)-1,
$$

where $D=P^{2}-4 Q$, the discriminant of the characteristic polynomial of the sequence $\left(U_{n}\right)$.

Table of Contents

(1) Introduction

- Lucas Sequences
- Elliptic Divisibility Sequences - Recurrence Definition
- Elliptic Divisibility Sequences - Elliptic Curve Based Definition
(2) Arithmetic Properties of the Lucas Sequences
(3) Arithmetic Properties of the Elliptic Divisibility Sequences

4. Main Results
(5) Summing Up

Lemma 5

Let $\left(B_{n}\right)_{n \geq 1}$ be an elliptic divisibility sequence corresponding to an elliptic curve E with the Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and a non-torsion point P in $E(\mathbb{Q})$.

Lemma 5

Let $\left(B_{n}\right)_{n \geq 1}$ be an elliptic divisibility sequence corresponding to an elliptic curve E with the Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and a non-torsion point P in $E(\mathbb{Q})$.

- Let p be a prime. There exists a smallest positive integer n_{0} such that $p \mid B_{n_{0}}$. Moreover, for every positive integer $n, p \mid B_{n}$ iff $n_{0} \mid n$.

Lemma 5

Let $\left(B_{n}\right)_{n \geq 1}$ be an elliptic divisibility sequence corresponding to an elliptic curve E with the Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and a non-torsion point P in $E(\mathbb{Q})$.

- Let p be a prime. There exists a smallest positive integer n_{0} such that $p \mid B_{n_{0}}$. Moreover, for every positive integer $n, p \mid B_{n}$ iff $n_{0} \mid n$.
- Let p be an odd prime. For every pair of positive integers m, n, if $\nu_{p}\left(B_{n}\right)>0$ then $\nu_{p}\left(B_{m n}\right)=\nu_{p}\left(B_{n}\right)+\nu_{p}(m)$.

Lemma 5

Let $\left(B_{n}\right)_{n \geq 1}$ be an elliptic divisibility sequence corresponding to an elliptic curve E with the Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and a non-torsion point P in $E(\mathbb{Q})$.

- Let p be a prime. There exists a smallest positive integer n_{0} such that $p \mid B_{n_{0}}$. Moreover, for every positive integer $n, p \mid B_{n}$ iff $n_{0} \mid n$.
- Let p be an odd prime. For every pair of positive integers m, n, if $\nu_{p}\left(B_{n}\right)>0$ then $\nu_{p}\left(B_{m n}\right)=\nu_{p}\left(B_{n}\right)+\nu_{p}(m)$.
- For every pair of positive integers m, n, if $\nu_{2}\left(B_{n}\right)>0$ then $\nu_{2}\left(B_{m n}\right)=\nu_{2}\left(B_{n}\right)+\nu_{2}(m)$ if the coefficient a_{1} is even and $\left|\nu_{2}\left(B_{m n}\right)-\left(\nu_{2}\left(B_{n}\right)+\nu_{2}(m)\right)\right| \leq \epsilon$ otherwise, where the constant ϵ depends only on E and P.

Lemma 5

Let $\left(B_{n}\right)_{n \geq 1}$ be an elliptic divisibility sequence corresponding to an elliptic curve E with the Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and a non-torsion point P in $E(\mathbb{Q})$.

- Let p be a prime. There exists a smallest positive integer n_{0} such that $p \mid B_{n_{0}}$. Moreover, for every positive integer $n, p \mid B_{n}$ iff $n_{0} \mid n$.
- Let p be an odd prime. For every pair of positive integers m, n, if $\nu_{p}\left(B_{n}\right)>0$ then $\nu_{p}\left(B_{m n}\right)=\nu_{p}\left(B_{n}\right)+\nu_{p}(m)$.
- For every pair of positive integers m, n, if $\nu_{2}\left(B_{n}\right)>0$ then $\nu_{2}\left(B_{m n}\right)=\nu_{2}\left(B_{n}\right)+\nu_{2}(m)$ if the coefficient a_{1} is even and $\left|\nu_{2}\left(B_{m n}\right)-\left(\nu_{2}\left(B_{n}\right)+\nu_{2}(m)\right)\right| \leq \epsilon$ otherwise, where the constant ϵ depends only on E and P.
- For all positive integers m, n,

$$
\operatorname{gcd}\left(B_{m}, B_{n}\right)=B_{\operatorname{gcd}(m, n)}
$$

i.e., $E D S$ is a strong divisibility sequence.

Table of Contents

(1) Introduction

- Lucas Sequences
- Elliptic Divisibility Sequences - Recurrence Definition
- Elliptic Divisibility Sequences - Elliptic Curve Based Definition
(2) Arithmetic Properties of the Lucas Sequences
(3) Arithmetic Properties of the Elliptic Divisibility Sequences
(4) Main Results
(5) Summing Up

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence $\left(T_{n}\right)$ are

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

1,

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \frac{76751}{2}
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}, \quad 7471977820027132645 .
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}, \quad 7471977820027132645 .
$$

For the Fibonacci sequence $F_{n}=U(1,-1)$, we have $\Delta=5$ and the first five terms of the sequence (T_{n}) are

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}, \quad 7471977820027132645 .
$$

For the Fibonacci sequence $F_{n}=U(1,-1)$, we have $\Delta=5$ and the first five terms of the sequence (T_{n}) are

$$
1
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}, \quad 7471977820027132645 .
$$

For the Fibonacci sequence $F_{n}=U(1,-1)$, we have $\Delta=5$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad 11,
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}, \quad 7471977820027132645 .
$$

For the Fibonacci sequence $F_{n}=U(1,-1)$, we have $\Delta=5$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad 11, \quad 61,
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}, \quad 7471977820027132645 .
$$

For the Fibonacci sequence $F_{n}=U(1,-1)$, we have $\Delta=5$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad 11, \quad 61, \quad 451
$$

Let the sequence $\left(T_{n}\right)_{n \geq 1}$ be defined by

$$
T_{n}=\left|\frac{U_{n \Delta}}{U_{n} U_{\Delta}}\right|
$$

where $\Delta=|D|$ and D is the discriminant of the characteristic polynomial $x^{2}-P x+Q$ associated with the Lucas sequence $\left(U_{n}\right)_{n \geq 0}$.
For example, for the sequence $U(4,-7)$, we have $\Delta=12$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad \frac{76751}{2}, \quad \frac{3240525601}{3}, \quad \frac{158095946378449}{2}, \quad 7471977820027132645 .
$$

For the Fibonacci sequence $F_{n}=U(1,-1)$, we have $\Delta=5$ and the first five terms of the sequence (T_{n}) are

$$
1, \quad 11, \quad 61, \quad 451, \quad 3001
$$

Definition 6

Let N be a positive integer. A sequence (u_{n}) of rational numbers is said to be an N-almost strong divisibility sequence if for all m and n where u_{m} and u_{n} are integers we have

$$
\operatorname{gcd}\left(u_{m}, u_{n}\right)=u_{\operatorname{gcd}(m, n)}
$$

whenever $\operatorname{gcd}(m n, N)=1$.

Theorem 7 (Panraksa, T)

The sequence $\left(T_{n}\right)_{n \geq 1}$ is a Δ-almost strong divisibility sequence.

Let n be a positive integer. Define the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ by $H_{1}(n)=T_{n}$ and $H_{k}(n)=T_{n H_{k-1}(n)}$ for $k \geq 2$. The first few terms of the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ are

Let n be a positive integer. Define the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ by $H_{1}(n)=T_{n}$ and $H_{k}(n)=T_{n H_{k-1}(n)}$ for $k \geq 2$. The first few terms of the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ are

$$
T_{n},
$$

Let n be a positive integer. Define the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ by $H_{1}(n)=T_{n}$ and $H_{k}(n)=T_{n H_{k-1}(n)}$ for $k \geq 2$. The first few terms of the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ are

$$
T_{n}, \quad T_{n T_{n}},
$$

Let n be a positive integer. Define the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ by $H_{1}(n)=T_{n}$ and $H_{k}(n)=T_{n H_{k-1}(n)}$ for $k \geq 2$. The first few terms of the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ are

$$
T_{n}, \quad T_{n T_{n}}, \quad T_{n} T_{n T_{n}},
$$

Let n be a positive integer. Define the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ by $H_{1}(n)=T_{n}$ and $H_{k}(n)=T_{n H_{k-1}(n)}$ for $k \geq 2$. The first few terms of the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ are

$$
T_{n}, \quad T_{n} T_{n}, \quad T_{n} T_{n T_{n}}, \quad T_{n} T_{n T_{n} T_{n}}
$$

Let n be a positive integer. Define the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ by $H_{1}(n)=T_{n}$ and $H_{k}(n)=T_{n H_{k-1}(n)}$ for $k \geq 2$. The first few terms of the sequence $\left(H_{k}(n)\right)_{k \geq 1}$ are

$$
T_{n}, \quad T_{n} T_{n}, \quad T_{n} T_{n T_{n}}, \quad T_{n} T_{n T_{n} T_{n}} .
$$

Theorem 8 (Panraksa, T)

Suppose $\operatorname{gcd}(n, \Delta)=1$ and $T_{n} \neq 1$. Then, for each positive integer k,

$$
T_{n}^{k} \| H_{k}(n)
$$

Let τ be a positive integer and $\left(B_{n}\right)_{n \geq 1}$ an elliptic divisibility sequence corresponding to an elliptic curve with the Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and a non-torsion point P. Define the sequence $\left(K_{n}\right)_{n \geq 1}$ by

$$
K_{n}=\frac{B_{\tau n}}{B_{\tau} B_{n}} .
$$

Let τ be a positive integer and $\left(B_{n}\right)_{n \geq 1}$ an elliptic divisibility sequence corresponding to an elliptic curve with the Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ and a non-torsion point P. Define the sequence $\left(K_{n}\right)_{n \geq 1}$ by

$$
K_{n}=\frac{B_{\tau n}}{B_{\tau} B_{n}}
$$

Theorem 9 (Panraksa, T)

If the coefficient a_{1} is even and $\tau \mid B_{\tau}$, then the sequence $\left(K_{n}\right)_{n \geq 1}$ is a τ-almost strong divisibility sequence. That is, for all positive integers m, n, if $\operatorname{gcd}(m n, \tau)=1$, then

$$
\operatorname{gcd}\left(K_{m}, K_{n}\right)=K_{\operatorname{gcd}(m, n)}
$$

For example, the elliptic divisibility sequence $\left(B_{n}\right)_{n \geq 1}$ corresponding to the elliptic curve $E: y^{2}+y=x^{3}-x$ and the point $P=(0,0)$ is
$1,1,1,1,2,1,3,5,7,4,23,29,59,129,314,65,1529, \ldots$

For example, the elliptic divisibility sequence $\left(B_{n}\right)_{n \geq 1}$ corresponding to the elliptic curve $E: y^{2}+y=x^{3}-x$ and the point $P=(0,0)$ is
$1,1,1,1,2,1,3,5,7,4,23,29,59,129,314,65,1529, \ldots$
One can check that $40 \mid B_{40}$. Then the sequence $\left(K_{n}\right)_{n \geq 1}$ defined by

$$
K_{n}=\frac{B_{40 n}}{B_{40} B_{n}}=\frac{B_{40 n}}{(40 \cdot 13526278251270010) B_{n}}
$$

for all $n \geq 1$ satisfies

$$
\operatorname{gcd}\left(K_{m}, K_{n}\right)=K_{\operatorname{gcd}(m, n)}
$$

whenever $\operatorname{gcd}(m n, 40)=1$.

Theorem 10 (Panraksa, T)

Let $\left(B_{n}\right)_{n \geq 1}$ be an elliptic divisibility sequence corresponding to an elliptic curve whose Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ has a_{1} even. Let n be a positive integer. Define a sequence $\left(G_{k}(n)\right)_{k \geq 1}$ as follows: $G_{1}(n)=B_{n}$ and $G_{k}(n)=B\left(n G_{k-1}(n)\right)$ for $k \geq 2$. Then, if $B_{n} \neq 1$, we have

$$
B_{n}^{k} \| G_{k}(n)
$$

for all positive integers k.

Lemma 11 (Matijasevich)

For $n>2$, we have

$$
F_{n}^{2} \mid F_{m} \text { if and only if } n F_{n} \mid m .
$$

Lemma 11 (Matijasevich)
For $n>2$, we have

$$
F_{n}^{2} \mid F_{m} \quad \text { if and only if } n F_{n} \mid m .
$$

Hilbert's 10th Problem

Is there a general algorithm to determine whether a given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns) has a solution in integers?

Lemma 11 (Matijasevich)

For $n>2$, we have

$$
F_{n}^{2} \mid F_{m} \text { if and only if } n F_{n} \mid m .
$$

Hilbert's 10th Problem

Is there a general algorithm to determine whether a given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns) has a solution in integers? For example, the equation $x^{2}+y^{2}=z^{2}$ has infinitely many solutions in nonzero integers, while $x^{n}+y^{n}=z^{n}$ has no solutions in nonzero integers, for $n \geq 3$.

Lemma 11 (Matijasevich)

For $n>2$, we have

$$
F_{n}^{2} \mid F_{m} \text { if and only if } n F_{n} \mid m .
$$

Hilbert's 10th Problem

Is there a general algorithm to determine whether a given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns) has a solution in integers? For example, the equation $x^{2}+y^{2}=z^{2}$ has infinitely many solutions in nonzero integers, while $x^{n}+y^{n}=z^{n}$ has no solutions in nonzero integers, for $n \geq 3$.

Theorem 12 (Panraksa, T)

Let $\left(B_{n}\right)_{n \geq 1}$ be an elliptic divisibility sequence corresponding to an elliptic curve whose Weierstrass equation: $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ has a_{1} even. Moreover, suppose that there exists a positive integer N such that all terms of the sequence $\left(B_{n}\right)_{n \geq N}$ are distinct and none of the terms B_{1}, \ldots, B_{N-1} appears in $\left(B_{n}\right)_{n \geq N}$. Then, for all integers $n, r \geq N$ and for all positive integers k, we have

$$
B_{n}^{k} \mid B_{r} \quad \text { if and only if } n B_{n}^{k-1} \mid r .
$$

Table of Contents

(1) Introduction

- Lucas Sequences
- Elliptic Divisibility Sequences - Recurrence Definition
- Elliptic Divisibility Sequences - Elliptic Curve Based Definition
(2) Arithmetic Properties of the Lucas Sequences
(3) Arithmetic Properties of the Elliptic Divisibility Sequences

4. Main Results
(5) Summing Up

Thank You!

References I

[Mat70] Yuri Matijasevich. "Enumerable sets are Diophantine, Dokl". In: Dokl. Math. 11 (1970), pp. 354-358.
[PT17] Chatchawan Panraksa and Aram Tangboonduangjit. "On some arithmetic properties of a sequence related to the quotient of Fibonacci numbers". In: Fibonacci Quart 55.1 (2017), pp. 21-28.
[PT18] Chatchawan Panraksa and Aram Tangboonduangjit. "p-Adic valuation of Lucas iteration sequences". In: Fibonacci Quart 56.4 (2018), pp. 348-353.
[PT22] Chatchawan Panraksa and Aram Tangboonduangjit. "Some divisibility properties concerning Lucas and elliptic divisibility sequences". In: Journal of Integer Sequences 25.2 (2022), pp. 1-15.
[San16] Carlo Sanna. "The p-adic valuation of Lucas sequences". In: Fibonacci Quart 54.2 (2016), pp. 118-124.

