Curves with few bad primes over cyclotomic \mathbb{Z}_{ℓ} -extensions

Journées Arithmétiques 2023

Robin Visser (joint work with Samir Siksek)

> Mathematics Institute University of Warwick

> > 7 July 2023

• Let K be a number field and S a finite set of places of K.

• Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A/K, its K-rational points A(K) are finitely generated.

• Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A/K, its K-rational points A(K) are finitely generated.

Theorem (Siegel 1929, Mahler 1933)

Let $a, b \in K^{\times}$. There are only finitely many S-units x, y in K such that ax + by = 1.

• Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A/K, its K-rational points A(K) are finitely generated.

Theorem (Siegel 1929, Mahler 1933)

Let $a, b \in K^{\times}$. There are only finitely many S-units x, y in K such that ax + by = 1.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

• Let K be a number field and S a finite set of places of K.

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A/K, its K-rational points A(K) are finitely generated.

Theorem (Siegel 1929, Mahler 1933)

Let $a, b \in K^{\times}$. There are only finitely many S-units x, y in K such that ax + by = 1.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let $d \ge 1$ be a positive integer. Then there are only finitely many K-isomorphism classes of (p.p.) abelian varieties A/K of dimension d with good reduction outside S.

• What if K is "bigger" than a number field?

• What if K is "bigger" than a number field?

\mathbb{Z}_{ℓ} -cyclotomic extension of *K*

Let K be a number field and ℓ a fixed prime. For each $n \ge 1$, let ζ_{ℓ^n} be a primitive ℓ^n -th root of unity and let $\mathbb{Q}_{n,\ell}$ be the unique cyclic degree ℓ^n totally real subfield of $\mathbb{Q}(\zeta_{\ell^{n+2}})$. Let $\mathbb{Q}_{\infty,\ell} = \bigcup_{n=1}^{\infty} \mathbb{Q}_{n,\ell}$. The \mathbb{Z}_{ℓ} -cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty,\ell}$.

• What if K is "bigger" than a number field?

\mathbb{Z}_{ℓ} -cyclotomic extension of *K*

Let K be a number field and ℓ a fixed prime. For each $n \ge 1$, let ζ_{ℓ^n} be a primitive ℓ^n -th root of unity and let $\mathbb{Q}_{n,\ell}$ be the unique cyclic degree ℓ^n totally real subfield of $\mathbb{Q}(\zeta_{\ell^{n+2}})$. Let $\mathbb{Q}_{\infty,\ell} = \bigcup_{n=1}^{\infty} \mathbb{Q}_{n,\ell}$. The \mathbb{Z}_{ℓ} -cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty,\ell}$.

• $Gal(\mathbb{Q}_{n,\ell}/\mathbb{Q}) \cong \mathbb{Z}/\ell^n\mathbb{Z}$ and $Gal(K_{\infty,\ell}/K) \cong \mathbb{Z}_{\ell}$.

• What if K is "bigger" than a number field?

\mathbb{Z}_{ℓ} -cyclotomic extension of *K*

Let K be a number field and ℓ a fixed prime. For each $n \ge 1$, let ζ_{ℓ^n} be a primitive ℓ^n -th root of unity and let $\mathbb{Q}_{n,\ell}$ be the unique cyclic degree ℓ^n totally real subfield of $\mathbb{Q}(\zeta_{\ell^{n+2}})$. Let $\mathbb{Q}_{\infty,\ell} = \bigcup_{n=1}^{\infty} \mathbb{Q}_{n,\ell}$. The \mathbb{Z}_{ℓ} -cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty,\ell}$.

•
$$\operatorname{Gal}(\mathbb{Q}_{n,\ell}/\mathbb{Q})\cong\mathbb{Z}/\ell^n\mathbb{Z}$$
 and $\operatorname{Gal}(K_{\infty,\ell}/K)\cong\mathbb{Z}_\ell.$

• If
$$\ell = 2$$
, then $\mathbb{Q}_{n,2} = \mathbb{Q}(\zeta_{2^{n+2}})^+ = \mathbb{Q}(\zeta_{2^{n+2}} + 1/\zeta_{2^{n+2}})$, so $\mathbb{Q}_{\infty,2} = \bigcup_{n=1}^{\infty} \mathbb{Q}(\zeta_{2^n})^+$.

• What if K is "bigger" than a number field?

\mathbb{Z}_{ℓ} -cyclotomic extension of *K*

Let K be a number field and ℓ a fixed prime. For each $n \ge 1$, let ζ_{ℓ^n} be a primitive ℓ^n -th root of unity and let $\mathbb{Q}_{n,\ell}$ be the unique cyclic degree ℓ^n totally real subfield of $\mathbb{Q}(\zeta_{\ell^{n+2}})$. Let $\mathbb{Q}_{\infty,\ell} = \bigcup_{n=1}^{\infty} \mathbb{Q}_{n,\ell}$. The \mathbb{Z}_{ℓ} -cyclotomic extension of K is the field $K \cdot \mathbb{Q}_{\infty,\ell}$.

•
$$\operatorname{Gal}(\mathbb{Q}_{n,\ell}/\mathbb{Q})\cong\mathbb{Z}/\ell^n\mathbb{Z}$$
 and $\operatorname{Gal}(K_{\infty,\ell}/K)\cong\mathbb{Z}_\ell.$

• If
$$\ell = 2$$
, then $\mathbb{Q}_{n,2} = \mathbb{Q}(\zeta_{2^{n+2}})^+ = \mathbb{Q}(\zeta_{2^{n+2}} + 1/\zeta_{2^{n+2}})$, so $\mathbb{Q}_{\infty,2} = \bigcup_{n=1}^{\infty} \mathbb{Q}(\zeta_{2^n})^+$.
• If $\ell = 3$, then $\mathbb{Q}_{n,3} = \mathbb{Q}(\zeta_{3^{n+1}})^+ = \mathbb{Q}(\zeta_{3^{n+1}} + 1/\zeta_{3^{n+1}})$, so $\mathbb{Q}_{\infty,3} = \bigcup_{n=1}^{\infty} \mathbb{Q}(\zeta_{3^n})^+$.

00

Conjecture (Mazur 1972)

Let $A/K_{\infty,\ell}$ be an abelian variety. Then $A(K_{\infty,\ell})$ is finitely generated.

Conjecture (Mazur 1972)

Let $A/K_{\infty,\ell}$ be an abelian variety. Then $A(K_{\infty,\ell})$ is finitely generated.

Conjecture (Parshin–Zarhin 2009)

Let $X/K_{\infty,\ell}$ be a curve of genus ≥ 2 . Then $X(K_{\infty,\ell})$ is finite.

Conjecture (Mazur 1972)

Let $A/K_{\infty,\ell}$ be an abelian variety. Then $A(K_{\infty,\ell})$ is finitely generated.

Conjecture (Parshin–Zarhin 2009)

Let $X/K_{\infty,\ell}$ be a curve of genus ≥ 2 . Then $X(K_{\infty,\ell})$ is finite.

Theorem (Zarhin 2010)

Let A, B be abelian varieties defined over $K_{\infty,\ell}$, and denote their respective ℓ -adic Tate modules by $T_{\ell}(A)$, $T_{\ell}(B)$. Then the natural embedding

$$\mathit{Hom}_{K_{\infty,\ell}}(A,B)\otimes \mathbb{Z}_\ell \hookrightarrow \mathit{Hom}_{\mathit{Gal}(\overline{K_{\infty,\ell}}/K_{\infty,\ell})}(\mathcal{T}_\ell(A),\mathcal{T}_\ell(B))$$

is a bijection.

Conjecture (Mazur 1972)

Let $A/K_{\infty,\ell}$ be an abelian variety. Then $A(K_{\infty,\ell})$ is finitely generated.

Conjecture (Parshin–Zarhin 2009)

Let $X/K_{\infty,\ell}$ be a curve of genus ≥ 2 . Then $X(K_{\infty,\ell})$ is finite.

Theorem (Zarhin 2010)

Let A, B be abelian varieties defined over $K_{\infty,\ell}$, and denote their respective ℓ -adic Tate modules by $T_{\ell}(A)$, $T_{\ell}(B)$. Then the natural embedding

$$\mathit{Hom}_{\mathcal{K}_{\infty,\ell}}(A,B)\otimes\mathbb{Z}_{\ell}\hookrightarrow \mathit{Hom}_{\mathit{Gal}(\overline{\mathcal{K}_{\infty,\ell}}/\mathcal{K}_{\infty,\ell})}(\mathcal{T}_{\ell}(A),\mathcal{T}_{\ell}(B))$$

is a bijection.

• What about Siegel–Mahler's theorem or the Shafarevich conjecture over $K_{\infty,\ell}$?

Cyclotomic polynomial

Let $m \ge 1$ and let ζ_m be a primitive *m*-th root of unity. The *m*-th cyclotomic polynomial $\Phi_m(X) \in \mathbb{Z}[X]$ is

$$\Phi_m(X) := \prod_{\substack{1 \le i \le m \\ (i,m)=1}} (X - \zeta_m^i).$$

Cyclotomic polynomial

Let $m \ge 1$ and let ζ_m be a primitive *m*-th root of unity. The *m*-th cyclotomic polynomial $\Phi_m(X) \in \mathbb{Z}[X]$ is

$$\Phi_m(X) := \prod_{\substack{1 \leq i \leq m \ (i,m)=1}} (X - \zeta_m^i).$$

Properties:

•
$$X^m - 1 = \prod_{d|m} \Phi_d(X)$$
 and $\Phi_m(X) = \prod_{d|m} (X^d - 1)^{\mu(m/d)}$.

Cyclotomic polynomial

Let $m \ge 1$ and let ζ_m be a primitive *m*-th root of unity. The *m*-th cyclotomic polynomial $\Phi_m(X) \in \mathbb{Z}[X]$ is

$$\Phi_m(X):=\prod_{\substack{1\leq i\leq m\ (i,m)=1}}(X-\zeta_m^i).$$

Properties:

•
$$X^m - 1 = \prod_{d|m} \Phi_d(X)$$
 and $\Phi_m(X) = \prod_{d|m} (X^d - 1)^{\mu(m/d)}$.

• For
$$\ell$$
 prime, $\Phi_{\ell^n}(X) = \sum_{i=0}^{\ell-1} X^{i\ell^{n-1}}$, thus $\Phi_{\ell^n}(1) = \ell$.

- Recall that $\mathbb{Q}(\zeta_{\ell^n})/\mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}(\zeta_{\ell^n})$ lying above ℓ .

- Recall that $\mathbb{Q}(\zeta_{\ell^n})/\mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}(\zeta_{\ell^n})$ lying above ℓ .

Theorem

Let ℓ be a prime and $n \ge 1$. Let $m \ge 1$ and suppose $\ell^n \not\mid m$. Then $\Phi_m(\zeta_{\ell^n})$ is a $\{v_\ell\}$ -unit in $\mathbb{Q}(\zeta_{\ell^n})$.

- Recall that $\mathbb{Q}(\zeta_{\ell^n})/\mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}(\zeta_{\ell^n})$ lying above ℓ .

Theorem

Let ℓ be a prime and $n \ge 1$. Let $m \ge 1$ and suppose $\ell^n \not\mid m$. Then $\Phi_m(\zeta_{\ell^n})$ is a $\{\upsilon_\ell\}$ -unit in $\mathbb{Q}(\zeta_{\ell^n})$.

Proof:

• Let
$$m = k\ell^t$$
 where $\ell \not| k$. Note $\Phi_m(\zeta_{\ell^n})$ divides $\zeta_{\ell^n}^m - 1 = \zeta_{\ell^{n-t}}^k - 1$.

- Recall that $\mathbb{Q}(\zeta_{\ell^n})/\mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}(\zeta_{\ell^n})$ lying above ℓ .

Theorem

Let ℓ be a prime and $n \ge 1$. Let $m \ge 1$ and suppose $\ell^n \not\mid m$. Then $\Phi_m(\zeta_{\ell^n})$ is a $\{v_\ell\}$ -unit in $\mathbb{Q}(\zeta_{\ell^n})$.

Proof:

- Let $m = k\ell^t$ where $\ell \not| k$. Note $\Phi_m(\zeta_{\ell^n})$ divides $\zeta_{\ell^n}^m 1 = \zeta_{\ell^{n-t}}^k 1$.
- By definition, $\zeta_{\ell^{n-t}}^k 1$ divides $\Phi_{\ell^{n-t}}(1) = \ell$, thus $\Phi_m(\zeta_{\ell^n})$ is a $\{\upsilon_\ell\}$ -unit.

- Recall that $\mathbb{Q}(\zeta_{\ell^n})/\mathbb{Q}$ is totally ramified above ℓ (and unramified above any $p \neq \ell$).
- Let v_{ℓ} be the unique prime in $\mathbb{Q}(\zeta_{\ell^n})$ lying above ℓ .

Theorem

Let ℓ be a prime and $n \ge 1$. Let $m \ge 1$ and suppose $\ell^n \not\mid m$. Then $\Phi_m(\zeta_{\ell^n})$ is a $\{v_\ell\}$ -unit in $\mathbb{Q}(\zeta_{\ell^n})$.

Proof:

- Let $m = k\ell^t$ where $\ell \not\mid k$. Note $\Phi_m(\zeta_{\ell^n})$ divides $\zeta_{\ell^n}^m 1 = \zeta_{\ell^{n-t}}^k 1$.
- By definition, $\zeta_{\ell^{n-t}}^k 1$ divides $\Phi_{\ell^{n-t}}(1) = \ell$, thus $\Phi_m(\zeta_{\ell^n})$ is a $\{v_\ell\}$ -unit.

Corollary

Let $F(X) := X^m \Phi_{m_1}(X) \Phi_{m_2}(X) \cdots \Phi_{m_k}(X)$ for some integers $m \ge 0, m_1, \ldots, m_k \ge 1$. Then $F(\zeta_{\ell^n})$ is a $\{\upsilon_\ell\}$ -unit, for sufficiently large n.

We can use cyclotomic polynomials to obtain infinitely many {v_ℓ}-unit solutions to ε + δ = k for various integers k. A quick computer search yields the following relations:

$$\begin{split} \Phi_2(X)^2 - \Phi_3(X) &= X, \\ \Phi_2(X)^2 - \Phi_4(X) &= 2X, \\ \Phi_2(X)^2 - \Phi_6(X) &= 3X, \\ \Phi_2(X)^2 - \Phi_1(X)^2 &= 4X, \\ \Phi_2(X)^4 - \Phi_{10}(X) &= 5X\Phi_3(X), \\ \Phi_2^2(X)\Phi_3(X) - \Phi_1(X)^2\Phi_6(X) &= 6X\Phi_4(X), \\ \Phi_7(X) - \Phi_1(X)^6 &= 7X\Phi_6(X)^2, \\ \Phi_2(X)^4 - \Phi_1(X)^4 &= 8X\Phi_4(X), \\ \Phi_2(X)^4 \Phi_5(X) - \Phi_1(X)^4\Phi_{10}(X) &= 10X\Phi_4(X)^3. \end{split}$$

Theorem (Siksek-V. 2023)

Let $\ell = 2$ or 3 and let $S = \{v_\ell\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty,\ell}$. Then, for each $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Theorem (Siksek–V. 2023)

Let $\ell = 2$ or 3 and let $S = \{v_\ell\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty,\ell}$. Then, for each $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Proof for k = 10:

• For each $n\geq 1$, define $arepsilon_n, \delta_n\in \mathcal{O}(\mathbb{Q}(\zeta_{\ell^n}), \mathcal{S})^{ imes}$ as

$$\varepsilon_n = \frac{\Phi_2(\zeta_{\ell^n})^4 \Phi_5(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}, \qquad \delta_n = \frac{-\Phi_1(\zeta_{\ell^n})^4 \Phi_{10}(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}.$$

noting that $\varepsilon_n + \delta_n = 10$.

Theorem (Siksek-V. 2023)

Let $\ell = 2$ or 3 and let $S = \{v_\ell\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty,\ell}$. Then, for each $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Proof for k = 10:

• For each $n\geq 1$, define $arepsilon_n, \delta_n\in \mathcal{O}(\mathbb{Q}(\zeta_{\ell^n}), \mathcal{S})^{ imes}$ as

$$\varepsilon_n = \frac{\Phi_2(\zeta_{\ell^n})^4 \Phi_5(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}, \qquad \delta_n = \frac{-\Phi_1(\zeta_{\ell^n})^4 \Phi_{10}(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}.$$

noting that $\varepsilon_n + \delta_n = 10$.

• As $\Phi_m(X) = X^{\varphi(m)} \Phi_m(X^{-1})$, this implies $\varepsilon_n^c = \varepsilon_n$ and $\delta_n^c = \delta_n$, thus $\varepsilon_n, \delta_n \in \mathbb{Q}_{\infty,\ell}$.

Theorem (Siksek-V. 2023)

Let $\ell = 2$ or 3 and let $S = \{v_\ell\}$ be the unique prime above ℓ in $\mathbb{Q}_{\infty,\ell}$. Then, for each $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 10\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Proof for k = 10:

• For each $n\geq 1$, define $arepsilon_n, \delta_n\in \mathcal{O}(\mathbb{Q}(\zeta_{\ell^n}), \mathcal{S})^{ imes}$ as

$$\varepsilon_n = \frac{\Phi_2(\zeta_{\ell^n})^4 \Phi_5(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}, \qquad \delta_n = \frac{-\Phi_1(\zeta_{\ell^n})^4 \Phi_{10}(\zeta_{\ell^n})}{\zeta_{\ell^n} \Phi_4(\zeta_{\ell^n})^3}.$$

noting that $\varepsilon_n + \delta_n = 10$.

- As $\Phi_m(X) = X^{\varphi(m)} \Phi_m(X^{-1})$, this implies $\varepsilon_n^c = \varepsilon_n$ and $\delta_n^c = \delta_n$, thus $\varepsilon_n, \delta_n \in \mathbb{Q}_{\infty,\ell}$.
- Using properties of cyclotomic units, one can show ε_n is not generated by $\{\pm \zeta_{\ell^{n-1}}, 1 \zeta_{\ell^{n-1}}^k, 1 \le k < \ell^{n-1}\}$, and thus $\varepsilon_m \neq \varepsilon_n$ for any m < n.

For each n ≥ 1, let G_n := Gal(Q(ζ_{5ⁿ})/Q_{n-1,5}). This is a cyclic group of order 4, generated by some σ ∈ G_n where σ(ζ_{5ⁿ}) = ζ^a_{5ⁿ} for some integer a.

- For each n ≥ 1, let G_n := Gal(Q(ζ_{5ⁿ})/Q_{n-1,5}). This is a cyclic group of order 4, generated by some σ ∈ G_n where σ(ζ_{5ⁿ}) = ζ_{5ⁿ}^a for some integer a.
- We want to find cyclotomic relations in 4 variables x₁, x₂, x₃, x₄ which are invariant under the 4 cycle (x₁, x₂, x₃, x₄) → (x₂, x₃, x₄, x₁).

- For each n ≥ 1, let G_n := Gal(Q(ζ_{5ⁿ})/Q_{n-1,5}). This is a cyclic group of order 4, generated by some σ ∈ G_n where σ(ζ_{5ⁿ}) = ζ_{5ⁿ}^a for some integer a.
- We want to find cyclotomic relations in 4 variables x₁, x₂, x₃, x₄ which are invariant under the 4 cycle (x₁, x₂, x₃, x₄) → (x₂, x₃, x₄, x₁).
- Thus, evaluating these at $(\zeta_{5^n}, \zeta_{5^n}^a, \zeta_{5^n}^{-1}, \zeta_{5^n}^{-a})$ yields an $\{v_5\}$ -unit in $\mathbb{Q}_{n-1,5}$.

- For each n ≥ 1, let G_n := Gal(Q(ζ_{5ⁿ})/Q_{n-1,5}). This is a cyclic group of order 4, generated by some σ ∈ G_n where σ(ζ_{5ⁿ}) = ζ^a_{5ⁿ} for some integer a.
- We want to find cyclotomic relations in 4 variables x₁, x₂, x₃, x₄ which are invariant under the 4 cycle (x₁, x₂, x₃, x₄) → (x₂, x₃, x₄, x₁).
- Thus, evaluating these at $(\zeta_{5^n}, \zeta_{5^n}^a, \zeta_{5^n}^{-1}, \zeta_{5^n}^{-a})$ yields an $\{v_5\}$ -unit in $\mathbb{Q}_{n-1,5}$.

$$\begin{split} x_4 \Phi_2 \Big(\frac{x_1 x_2^2}{x_3 x_4^2} \Big) \Phi_2 \Big(\frac{x_1^2 x_4}{x_2 x_3^2} \Big) &- x_2 \Phi_2 \Big(\frac{x_1^2 x_2}{x_3^2 x_4} \Big) \Phi_2 \Big(\frac{x_1 x_4^2}{x_2^2 x_3} \Big) \\ &= x_4 \Phi_1 \Big(\frac{x_1}{x_3} \Big) \Phi_1 \Big(\frac{x_2}{x_4} \Big) \Phi_1 \Big(\frac{x_1 x_2}{x_2 x_3} \Big) \Phi_1 \Big(\frac{x_1 x_4}{x_2 x_3} \Big) \Phi_1 \Big(\frac{x_1 x_2}{x_2 x_3} \Big) \Phi_1 \Big(\frac{x_1 x_4}{x_2 x_3} \Big) \Phi_1 \Big(\frac{x_1$$

Theorem (Siksek-V. 2023)

Let $\ell = 5$. Let $S = \{v_5\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty,5}$. For each $k \in \{1, 2, 4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Theorem (Siksek–V. 2023)

Let $\ell = 5$. Let $S = \{v_5\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty,5}$. For each $k \in \{1, 2, 4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Proof for k = 4:

• For each $n \geq 1$, define $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}(\zeta_{5^n}), S)^{\times}$ as

$$\varepsilon_n = \frac{\zeta_{5^n}^{-a} \Phi_2(\zeta_{5^n}^2)^2 \Phi_2(\zeta_{5^n}^{-1-a})^2}{\zeta_{5^n}^{a} \Phi_2(\zeta_{5^n}^{2+2a}) \Phi_2(\zeta_{5^n}^{2-2a})}, \quad \delta_n = \frac{-\zeta_{5^n}^{-a} \Phi_1(\zeta_{5^n}^2)^2 \Phi_1(\zeta_{5^n}^{-1-a})^2}{\zeta_{5^n}^{a} \Phi_2(\zeta_{5^n}^{2+2a}) \Phi_2(\zeta_{5^n}^{2-2a})}$$

where we've substituted $x_1 = \zeta_{5^n}$, $x_2 = \zeta_{5^n}^a$, $x_3 = \zeta_{5^n}^{-1}$ and $x_4 = \zeta_{5^n}^{-a}$ into the third cyclotomic relation shown previously. Therefore, $\varepsilon_n + \delta_n = 4$.

Theorem (Siksek–V. 2023)

Let $\ell = 5$. Let $S = \{v_5\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty,5}$. For each $k \in \{1, 2, 4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Proof for k = 4:

• For each $n \geq 1$, define $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}(\zeta_{5^n}), S)^{\times}$ as

$$\varepsilon_n = \frac{\zeta_{5^n}^{-a} \Phi_2(\zeta_{5^n}^2)^2 \Phi_2(\zeta_{5^n}^{-1-a})^2}{\zeta_{5^n}^{a} \Phi_2(\zeta_{5^n}^{2+2a}) \Phi_2(\zeta_{5^n}^{2-2a})}, \quad \delta_n = \frac{-\zeta_{5^n}^{-a} \Phi_1(\zeta_{5^n}^2)^2 \Phi_1(\zeta_{5^n}^{-1-a})^2}{\zeta_{5^n}^{a} \Phi_2(\zeta_{5^n}^{2+2a}) \Phi_2(\zeta_{5^n}^{2-2a})}$$

where we've substituted $x_1 = \zeta_{5^n}$, $x_2 = \zeta_{5^n}^a$, $x_3 = \zeta_{5^n}^{-1}$ and $x_4 = \zeta_{5^n}^{-a}$ into the third cyclotomic relation shown previously. Therefore, $\varepsilon_n + \delta_n = 4$.

• As ε_n and δ_n fixed under the action of $Gal(\mathbb{Q}(\zeta_{5^n})/\mathbb{Q}_{n-1,5})$, we have $\varepsilon_n, \delta_n \in \mathbb{Q}_{\infty,5}$.

Theorem (Siksek-V. 2023)

Let $\ell = 5$. Let $S = \{v_5\}$ be the unique prime above 5 in $\mathbb{Q}_{\infty,5}$. For each $k \in \{1, 2, 4\}$, there are infinitely many solutions $\varepsilon, \delta \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ to the S-unit equation $\varepsilon + \delta = k$.

Proof for k = 4:

• For each $n \geq 1$, define $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}(\zeta_{5^n}), S)^{\times}$ as

$$\varepsilon_n = \frac{\zeta_{5^n}^{-a} \Phi_2(\zeta_{5^n}^2)^2 \Phi_2(\zeta_{5^n}^{-1-a})^2}{\zeta_{5^n}^{a} \Phi_2(\zeta_{5^n}^{2+2a}) \Phi_2(\zeta_{5^n}^{2-2a})}, \quad \delta_n = \frac{-\zeta_{5^n}^{-a} \Phi_1(\zeta_{5^n}^2)^2 \Phi_1(\zeta_{5^n}^{-1-a})^2}{\zeta_{5^n}^{a} \Phi_2(\zeta_{5^n}^{2+2a}) \Phi_2(\zeta_{5^n}^{2-2a})}$$

where we've substituted $x_1 = \zeta_{5^n}$, $x_2 = \zeta_{5^n}^a$, $x_3 = \zeta_{5^n}^{-1}$ and $x_4 = \zeta_{5^n}^{-a}$ into the third cyclotomic relation shown previously. Therefore, $\varepsilon_n + \delta_n = 4$.

- As ε_n and δ_n fixed under the action of $Gal(\mathbb{Q}(\zeta_{5^n})/\mathbb{Q}_{n-1,5})$, we have $\varepsilon_n, \delta_n \in \mathbb{Q}_{\infty,5}$.
- A similar argument to the $\ell = 2, 3$ case shows that $\varepsilon_m \neq \varepsilon_n$ for any m > n.

Theorem (Siksek-V. 2023)

Let $\ell = 2, 3, 5$ or 7. Let $S = \{v_2, v_\ell\}$. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty,\ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty,\ell}$ -isogeny classes.

Theorem (Siksek-V. 2023)

Let $\ell = 2, 3, 5$ or 7. Let $S = \{v_2, v_\ell\}$. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty,\ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty,\ell}$ -isogeny classes.

Proof:

• For each $n \ge 1$, we have S-units $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ such that $\varepsilon_n + \delta_n = 1$.

Theorem (Siksek-V. 2023)

Let $\ell = 2, 3, 5$ or 7. Let $S = \{v_2, v_\ell\}$. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty,\ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty,\ell}$ -isogeny classes.

Proof:

- For each $n \ge 1$, we have S-units $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ such that $\varepsilon_n + \delta_n = 1$.
- We define the elliptic curve

$$E_n: Y^2 = X(X-1)(X-\varepsilon_n).$$

Theorem (Siksek-V. 2023)

Let $\ell = 2, 3, 5$ or 7. Let $S = \{v_2, v_\ell\}$. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty,\ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty,\ell}$ -isogeny classes.

Proof:

- For each $n \ge 1$, we have S-units $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ such that $\varepsilon_n + \delta_n = 1$.
- We define the elliptic curve

$$E_n: Y^2 = X(X-1)(X-\varepsilon_n).$$

• This model has discriminant $\Delta = 16\varepsilon_n^2(1 - \varepsilon_n)^2 = 16\varepsilon_n^2\delta_n^2$, and thus has good reduction away from S.

Theorem (Siksek-V. 2023)

Let $\ell = 2, 3, 5$ or 7. Let $S = \{v_2, v_\ell\}$. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from S and with full 2-torsion in $\mathbb{Q}_{\infty,\ell}$. Moreover, these elliptic curves form infinitely many distinct $\mathbb{Q}_{\infty,\ell}$ -isogeny classes.

Proof:

- For each $n \ge 1$, we have S-units $\varepsilon_n, \delta_n \in \mathcal{O}(\mathbb{Q}_{\infty,\ell}, S)^{\times}$ such that $\varepsilon_n + \delta_n = 1$.
- We define the elliptic curve

$$E_n: Y^2 = X(X-1)(X-\varepsilon_n).$$

- This model has discriminant $\Delta = 16\varepsilon_n^2(1 \varepsilon_n)^2 = 16\varepsilon_n^2\delta_n^2$, and thus has good reduction away from S.
- It's *j*-invariant is $256(\varepsilon_n^2 \varepsilon_n + 1)^3/\varepsilon_n^2(1 \varepsilon_n)^2$, thus yielding infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes.

Theorem (Siksek-V. 2023)

Let $g \ge 2$ and let $\ell = 3, 5, 7, 11$ or 13. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from $\{v_2, v_\ell\}$.

Theorem (Siksek-V. 2023)

Let $g \ge 2$ and let $\ell = 3, 5, 7, 11$ or 13. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from $\{v_2, v_\ell\}$.

Proof (sketch):

• For $n \ge 1$, let $G_n = \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell^n})^+ / \mathbb{Q}_{n-1,\ell})$; this is a cyclic subgroup of order $(\ell - 1)/2$.

Theorem (Siksek-V. 2023)

Let $g \ge 2$ and let $\ell = 3, 5, 7, 11$ or 13. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from $\{v_2, v_\ell\}$.

Proof (sketch):

- For $n \ge 1$, let $G_n = \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell^n})^+ / \mathbb{Q}_{n-1,\ell})$; this is a cyclic subgroup of order $(\ell 1)/2$.
- Define the hyperelliptic curve

$$D_n: Y^2 = h(X) \cdot \prod_{j=1}^k \prod_{\sigma \in G_n} \left(X - \left(\zeta_{\ell^n}^{1+\ell^{n-1}(j-1)} + \zeta_{\ell^n}^{-1-\ell^{n-1}(j-1)} \right)^{\sigma} \right)$$

where we choose some integer $k \ge 1$ and polynomial h(X) dividing X(X-1)(X+1) such that deg $(h) + k(\ell - 1)/2 \in \{2g + 1, 2g + 2\}$.

Theorem (Siksek-V. 2023)

Let $g \ge 2$ and let $\ell = 3, 5, 7, 11$ or 13. Then there are infinitely many $\overline{\mathbb{Q}}$ -isomorphism classes of genus g hyperelliptic curves over $\mathbb{Q}_{\infty,\ell}$ with good reduction away from $\{v_2, v_\ell\}$.

Proof (sketch):

- For $n \ge 1$, let $G_n = \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell^n})^+ / \mathbb{Q}_{n-1,\ell})$; this is a cyclic subgroup of order $(\ell 1)/2$.
- Define the hyperelliptic curve

$$D_n: Y^2 = h(X) \cdot \prod_{j=1}^k \prod_{\sigma \in G_n} \left(X - \left(\zeta_{\ell^n}^{1+\ell^{n-1}(j-1)} + \zeta_{\ell^n}^{-1-\ell^{n-1}(j-1)} \right)^{\sigma} \right)$$

where we choose some integer $k \ge 1$ and polynomial h(X) dividing X(X-1)(X+1) such that deg $(h) + k(\ell - 1)/2 \in \{2g + 1, 2g + 2\}$.

• Use the identities $\alpha + \alpha^{-1} - \beta - \beta^{-1} = \alpha^{-1}\Phi_1(\frac{\alpha}{\beta})\Phi_1(\alpha\beta)$, $\alpha + \alpha^{-1} = \alpha^{-1}\Phi_4(\alpha)$, $\alpha + \alpha^{-1} + 1 = \alpha^{-1}\Phi_3(\alpha)$, and $\alpha + \alpha^{-1} - 1 = \alpha^{-1}\Phi_6(\alpha)$ to prove D_n has good reduction away from S.

Summary

Conjectures/Theorems	K num field	$K=\mathbb{Q}_{\infty,\ell}$
$\begin{array}{l} \textbf{Tate conjecture} \\ Hom_{\mathcal{G}_{\mathcal{K}}}(\mathcal{T}_{\ell}(\mathcal{A}),\mathcal{T}_{\ell}(\mathcal{B})) \cong Hom_{\mathcal{K}}(\mathcal{A},\mathcal{B}) \otimes \mathbb{Z}_{\ell} \end{array}$	Yes	Yes
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Yes	?
Mordell–Weil $(A(K)$ finitely generated)	Yes	?
$egin{aligned} {f Siegel-Mahler}\ \#\{x,y\in \mathcal{O}_{K,S}^{ imes}: ax+by=1\}<\infty \end{aligned}$	Yes	No
Shafarevich (curves) # $\{C/K : genus(C) = g \ge 2, good outside S\} < \infty$	Yes	No
Shafarevich (abelian varieties) $\#\{A/K : \dim(C) = d, \text{good outside } S\} < \infty$	Yes	No

Merci!