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Theorem (Siegel 1929, Mahler 1933)
Let a,b € K*. There are only finitely many S-units x,y in K such that ax + by = 1.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let d > 1 be a positive integer. Then there are only finitely many K-isomorphism classes
of (p.p.) abelian varieties A/ K of dimension d with good reduction outside S.
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Let K be a number field and ¢ a fixed prime. For each n > 1, let {y» be a primitive ¢"-th
root of unity and let Q, ¢ be the unique cyclic degree £" totally real subfield of Q((sn+2).
Let Quo ¢ = Up21Qpe. The Zj-cyclotomic extension of K is the field K - Q.

* Gal(Q,,/Q) = Z/1"7Z and Gal(Kao ¢/ K) = Zy.

o |f /= 2, then Q,,’z = Q(<2n+2)+ = @(C2n+2 + 1/<2n+2), SO Qoo,2 = U Q(Czn)+.
n=1
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Motivation

® What if K is "bigger” than a number field?

Z-cyclotomic extension of K

Let K be a number field and ¢ a fixed prime. For each n > 1, let {y» be a primitive ¢"-th
root of unity and let Q, ¢ be the unique cyclic degree £" totally real subfield of Q((sn+2).
Let Quo ¢ = Up21Qpe. The Zj-cyclotomic extension of K is the field K - Q.

* Gal(Q,,/Q) = Z/1"Z and Gal(Kuo ¢/ K) = Zy

 If =2, then Qpo = Q(Conr2)™ = Q((an+2 4+ 1/(ont2), 50 Qoo 2 = U Q(Cn)*

o If £ =3, then Qn3 = Q(Cgr1)" = Q(Cnir + 1/Canin), 50 Qo3 = U Q(Gn)*
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Motivation

Conjecture (Mazur 1972)
Let A/K ¢ be an abelian variety. Then A(K. () is finitely generated.

Conjecture (Parshin—Zarhin 2009)
Let X/Koo,e be a curve of genus > 2. Then X(Ky ) is finite.

Theorem (Zarhin 2010)

Let A, B be abelian varieties defined over K, 4, and denote their respective (-adic Tate
modules by Ty(A), T¢(B). Then the natural embedding

is a bijection.

® What about Siegel-Mahler's theorem or the Shafarevich conjecture over K, ,?
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Cyclotomic polynomial

Let m > 1 and let (,, be a primitive m-th root of unity. The m-th cyclotomic
polynomial ®,,(X) € Z[X] is

op(X) = [ X =)

1<i<m
(i,m)=1
Properties:
o X" —1=]]®4(X)and dp(X) = [[ (X = 1)/,
dlm dlm
-1
® For ¢ prime, &4 (X) = ZX’[’F , thus ®4n(1) = ¢.
i=0
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® Recall that Q({sn)/Q is totally ramified above ¢ (and unramified above any p # /).
® Let vy be the unique prime in Q(({n) lying above ¢.

Theorem

Let ¢ be a prime and n > 1. Let m > 1 and suppose £" fm. Then ®,((¢) is a {vg}-unit
in Q(Cen).

Proof:
® Let m = k{* where £/ k. Note ®p((em) divides (7 —1 =¢f, — 1
® By definition, ¢, — 1 divides ®—¢(1) = ¢, thus ®p,((sn) is a {v;}-unit. O

Corollary

Let F(X) := XT®p (X)Pmy(X) - - - Py, (X) for some integers m >0, mq, ..., my > 1.
Then F({) is a {vg}-unit, for suff|C|ent|y large n.
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S-unit equation over Q((n)"

® We can use cyclotomic polynomials to obtain infinitely many {v}-unit solutions to
€ + 6 = k for various integers k. A quick computer search yields the following

relations:

Po(X)*d5(X) — Dy

(

X)*d10(X)

= X,
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S-unit equation over Q({m)"

Theorem (Siksek—V. 2023)

Let =2 or3 and let S = {vy} be the unique prime above ¢ in Q4. Then, for each
k€{1,2,3,4,5,6,7,8,10}, there are infinitely many solutions €,6 € O(Qx ¢, S)* to the
S-unit equation € + § = k.
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S-unit equation over Q({m)"

Theorem (Siksek-V. 2023)

Let =2 or3 and let S = {vy} be the unique prime above ¢ in Q4. Then, for each
k€{1,2,3,4,5,6,7,8,10}, there are infinitely many solutions €,6 € O(Qx ¢, S)* to the
S-unit equation € + § = k.

Proof for k = 10:
® For each n > 1, define e, 3, € O(Q({),S)* as

o S2n) Os(Gn) s = ®a(Ge) Pao(Cr)
Con®a((en)? Con®a((en)?
noting that ¢, + 0, = 10.
* As &,(X) = XM, (X71), this implies €5 = &, and §S = 6, thus &5, 6, € Qoo -
e Using properties of cyclotomic units, one can show &, is not generated by {£(-1,
1— (1, 1< k <"1}, and thus e # &, for any m < n. O
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S-unit equation over Q. 5

® For each n > 1, let G, := Gal(Q((5n)/Qn-15). This is a cyclic group of order 4,
generated by some o € G, where o((5n) = (. for some integer a.
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under the 4 cycle (x1, x2, x3, xa) — (x2, X3, X4, X1).
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® For each n > 1, let G, := Gal(Q({sn)/Qn-1,5). This is a cyclic group of order 4,
generated by some o € G, where o((5n) = (. for some integer a.

® We want to find cyclotomic relations in 4 variables xi, x2, x3, x4 which are invariant
under the 4 cycle (x1, x2, x3, xa) — (x2, X3, X4, X1).

® Thus, evaluating these at (§5n,ggn,g5*nl,§5*na) yields an {wvs}-unit in Q,_1 5.

2 2 2 2
w0 (32)0(59) —me:CE)0r () = reon (o (3)ou () ()
x3 Xa X5 X3 4 3X4 2X3

X3Xy X2 X3

s (2)0s(2) o0 (2)00(2) = 20n (22 oo (22).
X3 X4 X3 X4 X2X3 X3X4

2 2 5
X4¢2<X1) ¢2(§> —X4¢1(X1> O3] (ﬁ) = 4x2d>2(X1X2>q>2 (ﬂ)
X3 X4 x3 X4 X3X4 o3
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S-unit equation over Q. 5

Theorem (Siksek-V. 2023)

Let ¢ =5. Let S = {us} be the unique prime above 5 in Q. 5. For each k € {1,2,4},
there are infinitely many solutions ¢,0 € O(Qoo ¢, S)* to the S-unit equation € 4+ 6 = k.
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_ (7 2(6) P2 () _ GGG )
(G Pa(CT2) () €2 Do (a2 0o(¢2 )

n

where we've substituted x; = (5n, X0 = (&, X3 = anl and x4 = (g,” into the third
cyclotomic relation shown previously. Therefore, €, + §, = 4.
® As e, and 0, fixed under the action of Gal(Q({s7)/Qn—1,5), we have ep, 0, € Qo 5.
® A similar argument to the ¢ = 2,3 case shows that ¢, # €, for any m > n. O
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Elliptic curves over Q. ¢

Theorem (Siksek-V. 2023)

Let £ =2,3,5 or 7. Let S = {vo,vs}. Then there are infinitely many Q-isomorphism
classes of elliptic curves defined over Q¢ with good reduction away from S and with full
2-torsion in Qs ¢. Moreover, these elliptic curves form infinitely many distinct

Qoo,¢-isogeny classes.
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Let £ =2,3,5 or 7. Let S = {vo,vs}. Then there are infinitely many Q-isomorphism
classes of elliptic curves defined over Q¢ with good reduction away from S and with full
2-torsion in Qs ¢. Moreover, these elliptic curves form infinitely many distinct
Qoo,¢-isogeny classes.

Proof:
® For each n > 1, we have S-units €,,0, € O(Qoo, S)* such that e, + 6, = 1.
® \We define the elliptic curve
E,: Y?=X(X-1)(X —¢p).
® This model has discriminant A = 16c2(1 — £,)? = 16262, and thus has good
reduction away from S.
® It's j-invariant is 256(e2 — ¢, + 1)3/e2(1 — £,)?, thus yielding infinitely many

Q-isomorphism classes. O
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Hyperelliptic curves over Q¢

Theorem (Siksek-V. 2023)

Let g > 2 and let ¢ = 3,5,7,11 or 13. Then there are infinitely many Q-isomorphism
classes of genus g hyperelliptic curves over Qn ¢ with good reduction away from {vz, v,}.
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Let g > 2 and let ¢ = 3,5,7,11 or 13. Then there are infinitely many Q-isomorphism
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Proof (sketch):
® Forn>1, let G, = Gal(Q(¢pn)"/Qn_1,); this is a cyclic subgroup of order (¢ —1)/2.
® Define the hyperelliptic curve

D, : 1+zn -1 +C_1 =1(j-1)
0o T (x| /)

where we choose some integer k > 1 and polynomial h(X) dividing X(X —1)(X +1)
such that deg(h) + k(¢ —1)/2 € {2g + 1,2g + 2}.
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Theorem (Siksek-V. 2023)

Let g > 2 and let ¢ = 3,5,7,11 or 13. Then there are infinitely many Q-isomorphism
classes of genus g hyperelliptic curves over Qn ¢ with good reduction away from {vz, v,}.

Proof (sketch):
® Forn>1, let G, = Gal(Q(¢pn)"/Qn_1,); this is a cyclic subgroup of order (¢ —1)/2.
® Define the hyperelliptic curve

D, : H H ( 1+f” YU-1 +C_1 n=1(j— 1)) )

j=1 c€G,
where we choose some integer k > 1 and polynomial h(X) dividing X(X —1)(X +1)
such that deg(h) + k(¢ —1)/2 € {2g + 1,2g + 2}.
® Use the identities o +a ! — g — 71 = a‘lcbl(%)cbl(aﬁ), a+al=aldy(a),
a+al+1=a"lds3(a), and a +a ! —1=a"1dg(a) to prove D, has good
reduction away from S. 12/14



Summary

Conjectures/Theorems K num field K = Q¢
Tate conjecture Yes Yes
HomGK(Tf(A)v TE(B)) = HomK(Aa B) ® Zy
Mordell conjecture Yes -
genus(C) > 2 = #C(K) < o0 '
Mordell-Weil
. Yes ?
(A(K) finitely generated)
Siegel-Mabhler
#{x,y € Ogs:ax+by =1} <o Yes No
Shafarevich (curves) Yes No
#{C/K : genus(C) = g > 2, good outside S} < 0o
Shafarevich (abelian varieties) Ves No

#{A/K : dim(C) = d, good outside S} < oo
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Merci!
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