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Motivation
• Let K be a number field and S a finite set of places of K .

Theorem (Mordell 1922, Weil 1928)

For any abelian variety A/K, its K-rational points A(K ) are finitely generated.

Theorem (Siegel 1929, Mahler 1933)

Let a, b ∈ K×. There are only finitely many S-units x , y in K such that ax + by = 1.

Theorem (Faltings 1983; conjectured by Mordell 1922)

Any smooth curve C/K of genus at least 2 has only finitely many K-rational points.

Theorem (Faltings 1983; conjectured by Shafarevich 1962)

Let d ≥ 1 be a positive integer. Then there are only finitely many K-isomorphism classes
of (p.p.) abelian varieties A/K of dimension d with good reduction outside S.
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Motivation

• What if K is “bigger” than a number field?

Zℓ-cyclotomic extension of K

Let K be a number field and ℓ a fixed prime. For each n ≥ 1, let ζℓn be a primitive ℓn-th
root of unity and let Qn,ℓ be the unique cyclic degree ℓn totally real subfield of Q(ζℓn+2).
Let Q∞,ℓ = ∪∞

n=1Qn,ℓ. The Zℓ-cyclotomic extension of K is the field K ·Q∞,ℓ.

• Gal(Qn,ℓ/Q) ∼= Z/ℓnZ and Gal(K∞,ℓ/K ) ∼= Zℓ.

• If ℓ = 2, then Qn,2 = Q(ζ2n+2)+ = Q(ζ2n+2 + 1/ζ2n+2), so Q∞,2 =
∞⋃
n=1

Q(ζ2n)
+.

• If ℓ = 3, then Qn,3 = Q(ζ3n+1)+ = Q(ζ3n+1 + 1/ζ3n+1), so Q∞,3 =
∞⋃
n=1

Q(ζ3n)
+.
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Motivation

Conjecture (Mazur 1972)

Let A/K∞,ℓ be an abelian variety. Then A(K∞,ℓ) is finitely generated.

Conjecture (Parshin–Zarhin 2009)

Let X/K∞,ℓ be a curve of genus ≥ 2. Then X (K∞,ℓ) is finite.

Theorem (Zarhin 2010)

Let A,B be abelian varieties defined over K∞,ℓ, and denote their respective ℓ-adic Tate
modules by Tℓ(A), Tℓ(B). Then the natural embedding

HomK∞,ℓ
(A,B)⊗ Zℓ ↪→ HomGal(K∞,ℓ/K∞,ℓ)

(Tℓ(A),Tℓ(B))

is a bijection.

• What about Siegel–Mahler’s theorem or the Shafarevich conjecture over K∞,ℓ?
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Cyclotomic polynomials

Cyclotomic polynomial

Let m ≥ 1 and let ζm be a primitive m-th root of unity. The m-th cyclotomic
polynomial Φm(X ) ∈ Z[X ] is

Φm(X ) :=
∏

1≤i≤m
(i ,m)=1

(X − ζ im).

Properties:

• Xm − 1 =
∏
d |m

Φd(X ) and Φm(X ) =
∏
d |m

(X d − 1)µ(m/d).

• For ℓ prime, Φℓn(X ) =
ℓ−1∑
i=0

X iℓn−1
, thus Φℓn(1) = ℓ.
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Cyclotomic polynomials

• Recall that Q(ζℓn)/Q is totally ramified above ℓ (and unramified above any p ̸= ℓ).

• Let υℓ be the unique prime in Q(ζℓn) lying above ℓ.

Theorem

Let ℓ be a prime and n ≥ 1. Let m ≥ 1 and suppose ℓn ̸ |m. Then Φm(ζℓn) is a {υℓ}-unit
in Q(ζℓn).

Proof:

• Let m = kℓt where ℓ̸ | k . Note Φm(ζℓn) divides ζ
m
ℓn − 1 = ζkℓn−t − 1.

• By definition, ζkℓn−t − 1 divides Φℓn−t (1) = ℓ, thus Φm(ζℓn) is a {υℓ}-unit.

Corollary

Let F (X ) := XmΦm1(X )Φm2(X ) · · ·Φmk
(X ) for some integers m ≥ 0, m1, . . . ,mk ≥ 1.

Then F (ζℓn) is a {υℓ}-unit, for sufficiently large n.
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S-unit equation over Q(ζℓn)
+

• We can use cyclotomic polynomials to obtain infinitely many {υℓ}-unit solutions to
ε+ δ = k for various integers k . A quick computer search yields the following
relations:

Φ2(X )2 − Φ3(X ) = X ,

Φ2(X )2 − Φ4(X ) = 2X ,

Φ2(X )2 − Φ6(X ) = 3X ,

Φ2(X )2 − Φ1(X )2 = 4X ,

Φ2(X )4 − Φ10(X ) = 5XΦ3(X ),

Φ2
2(X )Φ3(X )− Φ1(X )2Φ6(X ) = 6XΦ4(X ),

Φ7(X )− Φ1(X )6 = 7XΦ6(X )2,

Φ2(X )4 − Φ1(X )4 = 8XΦ4(X ),

Φ2(X )4Φ5(X )− Φ1(X )4Φ10(X ) = 10XΦ4(X )3.

7 / 14



S-unit equation over Q(ζℓn)
+

Theorem (Siksek–V. 2023)

Let ℓ = 2 or 3 and let S = {υℓ} be the unique prime above ℓ in Q∞,ℓ. Then, for each
k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10}, there are infinitely many solutions ε, δ ∈ O(Q∞,ℓ,S)

× to the
S-unit equation ε+ δ = k .

Proof for k = 10:

• For each n ≥ 1, define εn, δn ∈ O(Q(ζℓn),S)
× as

εn =
Φ2(ζℓn)

4Φ5(ζℓn)

ζℓnΦ4(ζℓn)3
, δn =

−Φ1(ζℓn)
4Φ10(ζℓn)

ζℓnΦ4(ζℓn)3
.

noting that εn + δn = 10.

• As Φm(X ) = Xφ(m)Φm(X
−1), this implies εcn = εn and δcn = δn, thus εn, δn ∈ Q∞,ℓ.

• Using properties of cyclotomic units, one can show εn is not generated by {±ζℓn−1 ,
1− ζkℓn−1 , 1 ≤ k < ℓn−1}, and thus εm ̸= εn for any m < n.
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S-unit equation over Q∞,5

• For each n ≥ 1, let Gn := Gal(Q(ζ5n)/Qn−1,5). This is a cyclic group of order 4,
generated by some σ ∈ Gn where σ(ζ5n) = ζa5n for some integer a.

• We want to find cyclotomic relations in 4 variables x1, x2, x3, x4 which are invariant
under the 4 cycle (x1, x2, x3, x4) 7→ (x2, x3, x4, x1).

• Thus, evaluating these at (ζ5n , ζ
a
5n , ζ

−1
5n , ζ−a

5n ) yields an {υ5}-unit in Qn−1,5.

x4Φ2

(x1x22
x3x24

)
Φ2

(x21x4
x2x23

)
− x2Φ2

(x21x2
x23x4

)
Φ2

(x1x24
x22x3

)
= x4Φ1

(x1
x3

)
Φ1

(x2
x4

)
Φ1

(x1x2
x3x4

)
Φ1

(x1x4
x2x3

)
,

x4Φ3

(x1
x3

)
Φ3

(x2
x4

)
− x4Φ6

(x1
x3

)
Φ6

(x2
x4

)
= 2 x2Φ2

(x1x4
x2x3

)
Φ2

(x1x2
x3x4

)
,

x4Φ2

(x1
x3

)2
Φ2

(x2
x4

)2
− x4Φ1

(x1
x3

)2
Φ1

(x2
x4

)2
= 4 x2Φ2

(x1x2
x3x4

)
Φ2

(x1x4
x2x3

)
.

9 / 14



S-unit equation over Q∞,5

• For each n ≥ 1, let Gn := Gal(Q(ζ5n)/Qn−1,5). This is a cyclic group of order 4,
generated by some σ ∈ Gn where σ(ζ5n) = ζa5n for some integer a.

• We want to find cyclotomic relations in 4 variables x1, x2, x3, x4 which are invariant
under the 4 cycle (x1, x2, x3, x4) 7→ (x2, x3, x4, x1).

• Thus, evaluating these at (ζ5n , ζ
a
5n , ζ

−1
5n , ζ−a

5n ) yields an {υ5}-unit in Qn−1,5.

x4Φ2

(x1x22
x3x24

)
Φ2

(x21x4
x2x23

)
− x2Φ2

(x21x2
x23x4

)
Φ2

(x1x24
x22x3

)
= x4Φ1

(x1
x3

)
Φ1

(x2
x4

)
Φ1

(x1x2
x3x4

)
Φ1

(x1x4
x2x3

)
,

x4Φ3

(x1
x3

)
Φ3

(x2
x4

)
− x4Φ6

(x1
x3

)
Φ6

(x2
x4

)
= 2 x2Φ2

(x1x4
x2x3

)
Φ2

(x1x2
x3x4

)
,

x4Φ2

(x1
x3

)2
Φ2

(x2
x4

)2
− x4Φ1

(x1
x3

)2
Φ1

(x2
x4

)2
= 4 x2Φ2

(x1x2
x3x4

)
Φ2

(x1x4
x2x3

)
.

9 / 14



S-unit equation over Q∞,5

• For each n ≥ 1, let Gn := Gal(Q(ζ5n)/Qn−1,5). This is a cyclic group of order 4,
generated by some σ ∈ Gn where σ(ζ5n) = ζa5n for some integer a.

• We want to find cyclotomic relations in 4 variables x1, x2, x3, x4 which are invariant
under the 4 cycle (x1, x2, x3, x4) 7→ (x2, x3, x4, x1).

• Thus, evaluating these at (ζ5n , ζ
a
5n , ζ

−1
5n , ζ−a

5n ) yields an {υ5}-unit in Qn−1,5.

x4Φ2

(x1x22
x3x24

)
Φ2

(x21x4
x2x23

)
− x2Φ2

(x21x2
x23x4

)
Φ2

(x1x24
x22x3

)
= x4Φ1

(x1
x3

)
Φ1

(x2
x4

)
Φ1

(x1x2
x3x4

)
Φ1

(x1x4
x2x3

)
,

x4Φ3

(x1
x3

)
Φ3

(x2
x4

)
− x4Φ6

(x1
x3

)
Φ6

(x2
x4

)
= 2 x2Φ2

(x1x4
x2x3

)
Φ2

(x1x2
x3x4

)
,

x4Φ2

(x1
x3

)2
Φ2

(x2
x4

)2
− x4Φ1

(x1
x3

)2
Φ1

(x2
x4

)2
= 4 x2Φ2

(x1x2
x3x4

)
Φ2

(x1x4
x2x3

)
.

9 / 14



S-unit equation over Q∞,5

• For each n ≥ 1, let Gn := Gal(Q(ζ5n)/Qn−1,5). This is a cyclic group of order 4,
generated by some σ ∈ Gn where σ(ζ5n) = ζa5n for some integer a.

• We want to find cyclotomic relations in 4 variables x1, x2, x3, x4 which are invariant
under the 4 cycle (x1, x2, x3, x4) 7→ (x2, x3, x4, x1).

• Thus, evaluating these at (ζ5n , ζ
a
5n , ζ

−1
5n , ζ−a

5n ) yields an {υ5}-unit in Qn−1,5.

x4Φ2

(x1x22
x3x24

)
Φ2

(x21x4
x2x23

)
− x2Φ2

(x21x2
x23x4

)
Φ2

(x1x24
x22x3

)
= x4Φ1

(x1
x3

)
Φ1

(x2
x4

)
Φ1

(x1x2
x3x4

)
Φ1

(x1x4
x2x3

)
,

x4Φ3

(x1
x3

)
Φ3

(x2
x4

)
− x4Φ6

(x1
x3

)
Φ6

(x2
x4

)
= 2 x2Φ2

(x1x4
x2x3

)
Φ2

(x1x2
x3x4

)
,

x4Φ2

(x1
x3

)2
Φ2

(x2
x4

)2
− x4Φ1

(x1
x3

)2
Φ1

(x2
x4

)2
= 4 x2Φ2

(x1x2
x3x4

)
Φ2

(x1x4
x2x3

)
.

9 / 14



S-unit equation over Q∞,5

Theorem (Siksek–V. 2023)

Let ℓ = 5. Let S = {υ5} be the unique prime above 5 in Q∞,5. For each k ∈ {1, 2, 4},
there are infinitely many solutions ε, δ ∈ O(Q∞,ℓ, S)

× to the S-unit equation ε+ δ = k .

Proof for k = 4:

• For each n ≥ 1, define εn, δn ∈ O(Q(ζ5n),S)
× as

εn =
ζ−a
5n Φ2(ζ

2
5n)

2Φ2(ζ
−1−a
5n )2

ζa5nΦ2(ζ
2+2a
5n )Φ2(ζ

2−2a
5n )

, δn =
−ζ−a

5n Φ1(ζ
2
5n)

2Φ1(ζ
−1−a
5n )2

ζa5nΦ2(ζ
2+2a
5n )Φ2(ζ

2−2a
5n )

where we’ve substituted x1 = ζ5n , x2 = ζa5n , x3 = ζ−1
5n and x4 = ζ−a

5n into the third
cyclotomic relation shown previously. Therefore, εn + δn = 4.

• As εn and δn fixed under the action of Gal(Q(ζ5n)/Qn−1,5), we have εn, δn ∈ Q∞,5.

• A similar argument to the ℓ = 2, 3 case shows that εm ̸= εn for any m > n.
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Elliptic curves over Q∞,ℓ

Theorem (Siksek–V. 2023)

Let ℓ = 2, 3, 5 or 7. Let S = {υ2, υℓ}. Then there are infinitely many Q-isomorphism
classes of elliptic curves defined over Q∞,ℓ with good reduction away from S and with full
2-torsion in Q∞,ℓ. Moreover, these elliptic curves form infinitely many distinct
Q∞,ℓ-isogeny classes.

Proof:
• For each n ≥ 1, we have S-units εn, δn ∈ O(Q∞,ℓ, S)

× such that εn + δn = 1.
• We define the elliptic curve

En : Y 2 = X (X − 1)(X − εn).

• This model has discriminant ∆ = 16ε2n(1− εn)
2 = 16ε2nδ

2
n, and thus has good

reduction away from S .
• It’s j-invariant is 256(ε2n − εn + 1)3/ε2n(1− εn)

2, thus yielding infinitely many
Q-isomorphism classes.
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Hyperelliptic curves over Q∞,ℓ

Theorem (Siksek–V. 2023)

Let g ≥ 2 and let ℓ = 3, 5, 7, 11 or 13. Then there are infinitely many Q-isomorphism
classes of genus g hyperelliptic curves over Q∞,ℓ with good reduction away from {υ2, υℓ}.

Proof (sketch):
• For n ≥ 1, let Gn = Gal(Q(ζℓn)

+/Qn−1,ℓ); this is a cyclic subgroup of order (ℓ− 1)/2.
• Define the hyperelliptic curve

Dn : Y 2 = h(X ) ·
k∏

j=1

∏
σ∈Gn

(
X −

(
ζ
1+ℓn−1(j−1)
ℓn + ζ

−1−ℓn−1(j−1)
ℓn

)σ)
where we choose some integer k ≥ 1 and polynomial h(X ) dividing X (X − 1)(X + 1)
such that deg(h) + k(ℓ− 1)/2 ∈ {2g + 1, 2g + 2}.

• Use the identities α+ α−1 − β − β−1 = α−1Φ1(
α
β )Φ1(αβ), α+ α−1 = α−1Φ4(α),

α+ α−1 + 1 = α−1Φ3(α), and α+ α−1 − 1 = α−1Φ6(α) to prove Dn has good
reduction away from S .
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Summary

Conjectures/Theorems K num field K = Q∞,ℓ

Tate conjecture
HomGK

(Tℓ(A),Tℓ(B)) ∼= HomK (A,B)⊗ Zℓ
Yes Yes

Mordell conjecture
genus(C ) ≥ 2 =⇒ #C (K ) < ∞ Yes ?

Mordell–Weil
(A(K ) finitely generated)

Yes ?

Siegel–Mahler
#{x , y ∈ O×

K ,S : ax + by = 1} < ∞ Yes No

Shafarevich (curves)
#{C/K : genus(C ) = g ≥ 2, good outside S} < ∞ Yes No

Shafarevich (abelian varieties)
#{A/K : dim(C ) = d , good outside S} < ∞ Yes No
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Merci!
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