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Riemann Zeta function Basics

Let
ζ(s) =

∑
n≥1

n−s

for s = σ + it ∈ C where σ > 1. Then g(s) := ζ(s)− 1
s−1 can be

analytically continued to C. With this extended definition, ζ can
be shown to satisfy the functional equation

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s),

where Γ(s) denotes Euler’s gamma function.

This tells us ζ has zeros called trivial zeros, at negative even
integers. All others, called non-trivial are confined to the ”critical
strip” 0 < σ < 1 in C. The Riemann Hypothesis is that they are
on the line σ = 1

2 .



Some statements equivalent to the Riemann Hypothesis

(i) For a real number x ≥ 1, let π(x) denote the number prime
numbers in the interval [1, x ].
Let

Li(x) =

∫ x

0

dt

log t
.

The Riemann Hypothesis is equivalent to the statement: Given
ϵ > 0

π(x) = Li(x) + o(x
1
2
+ϵ).

The Prime Number Theorem says, that as x tends to infinity,
π(x) ∼ Li(x).



The Lindelhöf Hypothesis

The Lindelhöf Hypothesis, which is implied by the Riemann
Hypothesis says that given ϵ > 0 we have ζ

(
1
2 + it

)
= o(tϵ).

The Riemann Hypothesis implies there exists a constant A > 0
such that

ζ

(
1

2
+ it

)
= O

(
expA

{
log t

log log t

})
,

which is stronger than the Lindelhöf Hypothesis.



Random Sampling

Let (Xi )i≥1 be a sequence of independent Cauchy random
variables, with characteristic function ϕ(t) = e |t| and consider the
partial sums Sn = X1 + . . . ,Xn (n = 1, 2, . . .).

M. Lifshits and M. Weber studied the value distribution of the
Riemann zeta funtion ζ(s) sampled along the Cauchy random walk
(Sn)n≥1 showing, for b > 2, that

lim
N→∞

1

N

N∑
n=1

ζ

(
1

2
+ iSn

)
= 1 + o

(
(logN)b

N
1
2

)
.



The Boole Dynamical System

For (X , β, µ) a measure space, usually a probability space, let
T : X → X be a map of X preserving µ i.e. if
T−1A = {Tx : x ∈ A}, then µ(T−1A) = µ(A) for all A ∈ β.
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We say the dynamical system (X , β, µ,T ) is ergodic if T−1A = A
µ(A) is either 1 or 0.



The Boole Dynamical System

For (X , β, µ) a measure space, usually a probability space, let
T : X → X be a map of X preserving µ i.e. if
T−1A = {Tx : x ∈ A}, then µ(T−1A) = µ(A) for all A ∈ β. We
say the dynamical system (X , β, µ,T ) is ergodic if T−1A = A
µ(A) is either 1 or 0.

Observation of G. Boole :∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
f

(
x − 1

x

)
dx .

But dx is not a probability measure on R so we use Cauchy
probability dx

x2+1
which is and is also preserved by the map

Tx = x − 1
x .



The Lee Surjiajaya Dynamical System

Lee and Suriajaya show, for x ∈ R that the maps

Tα,β(x) =

{
α
2

(
x+β
α − α

x−β

)
, if x ̸= β;

β, if x = β,

for α > 0 and real β are measure preserving and ergodic with
respect to the probability measure

µα,β(A) =
α

π

∫
A

dt

α2 + (t − β)2
,

for any Lebesgue measurable subset A of the real numbers.



Birkhoff’s Ergodic Theorem

Given a measure preserving dynamical system (X , β, µ,T ), for
x ∈ X its orbit is x ,Tx ,T 2x ,T 3x , .....

Birkhoff’s ergodic theorem : Suppose f ∈ L1(X , β, µ). Then there
exist f ∈ L1(X , β, µ) with f (Tx) = f (x) µ almost everywhere such
that

lim
N→∞

1

N

N∑
n=1

f (T nx) = f (x),

µ almost everywhere.

If (X , β, µ,T ) is ergodic then f =
∫
X fdµ µ almost everywhere.



J Steuding’s work

Using Birkhoff’s ergodic theorem, applied to the Boole dynamical
system :

(I) For s with ℜ(s) > −1
2 we have

lim
N→∞

1

N

N∑
n=1

ζ(s + iT nx) = ℓ(s) :=

∫
R

ζ(s + it)

1 + t2
dt

for almost all x . If ℜ(s) > 1 then ℓ(s) = ζ(s + 1)− 2
s(2−s) and if

ℜ(s) < 1 then ℓ(s) = ζ(s + 1).



J Steuding’s work II

(II) The Lindelhöf being true is equivalent for any k ∈ N to the
existence of either side of the limit

lim
N→∞

1

N

N∑
n=1

|ζ(s + iT nx)|k =

∫
R

|ζ(s + it)|k

1 + t2
dt

for almost all x .



J Steuding’s work III

(III) The Riemann Hypothsis being true is equivalent to the
existence of either side of the limit and it being zero

lim
N→∞

1

N

N∑
n=1

log |ζ(s + iT nx)| =
∑

ℜ(ρ)> 1
2

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣
for almost all x .



Good Universality

We say (an)n≥1 is Lp good universal if given any dynamical system
(X , β, µ,T ) and f ∈ Lp(X , β, µ) the limit

ℓf ,T (x) = lim
N→∞

1

N

N∑
n=1

f (T anx),

exists µ almost everywhere.

Is ℓf ,T (x) =
∫
X dµ almost everywhere if (X , β, µ,T ) is ergodic.

Not always. This is crutial for our considerations.



Polynomial like sequences

1. The natural numbers: The sequence (n)∞n=1 is L1-good
universal. This is Birkhoff’s pointwise ergodic theorem.

2. Polynomial like sequences: Note if ϕ(x) is a polynomial such
that ϕ(N) ⊆ N (Bourgain 88, Nair 96) and p > 1 then (ϕ(n))∞n=1

and (ϕ(pn))
∞
n=1 (Nair 90) where pn is nth prime are Lp good

universal sequences. There are lots of other derminisitic and
random constructions, now.



Special Cases

A) Set X = Zp (p-adic integers), Tx = x + 1 (an ergodic map on
X = Zp) and ϕ(n) = n2, f ∈ Lp(Zp) gives

lim
N→∞

1

N

N∑
n=1

f (x + n2) =
∑
χ∈Ẑp

G (χ)f̂χχ(x)

with Gauss Sums

G (χ) =
1

pr

pr∑
n=1

e2πi
n2

pr .
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1

N

N∑
n=1

f (x + n2) =
∑
χ∈Ẑp
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G (χ) =
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Special Cases

B) (Density version of Dirichlet Theorem on arithmetic
progressions):

Suppose a, d ∈ N with (a, d) = 1. Let X = Z/dZ, Tx = x + 1,
f = χa,d (the characteristic function of the residue class a modulo
d).

1

N

N∑
n=1

χa,d(x + pn) →
1

ϕ(a)
(x = 0)

Contained in work of Bourgain 88, Wierdl 89, Nair 91, Mirek 2014,
Trojan 2019



Uniform distribution on a group

Any compact abelian topological group G supports a unique
translation invariant measure λ called Haar measure. We say a
sequence (xn)n≥1 is uniform distributed if for each continuous
f : G → C we have

lim
N→∞

1

N

N∑
n=1

f (yn) =

∫
G
f (t)dλ.

We say χ : G → T is a character if χ(g1g2) = χ(g1)χ(g2).
A sequence (xn)n≥1 is uniformly distributed on G if and only if

lim
N→∞

1

N

N∑
n=1

χ(yn) = 0,

for χ other than χ0 (the identity character) . This is Weyl’s
criterion.



Two important special cases

1) A sequence of real numbers (xn)n≥1 is uniformly distributed
modulo one (u.d. mod1) if given any interval I ⊆ [0, 1) we have

lim
N→∞

1

N

N∑
n=1

χI ({yn}) = |I |.

Here for a real number y we have used {y} to denote its fractional
part, χI denote the characteristic function of the interval I and |I |
denotes its length.



Two important special cases

1) A sequence of real numbers (xn)n≥1 is uniformly distributed
modulo one (u.d. mod1) if given any interval I ⊆ [0, 1) we have

lim
N→∞

1

N

N∑
n=1

χI (yn) = |I |.

Here for a real number y we have used y to denote its fractional
part, χI denote the characteristic function of the interval I and |I |
denotes its length.

2) We say a sequence of integers (kn)n≥1 is uniformly distributed
on Z if for ever natural number m ≥ 2 and every residue class a
modulo m we have

lim
N→∞

1

N
#{n ≤ N : kn ≡ a mod m} =

1

m
.



Hartman uniform distribution

A sequence of integers (kn)n≥1 is Hartman uniformly distributed on
Z if for any irrational number α we have ({knα})n≥1 u.d. mod1
and (kn)n≥1 is uniformly distributed on Z.



Hartman uniform distribution

A sequence of integers (kn)n≥1 is Hartman uniformly distributed on
Z if for any irrational number α we have ({knα})n≥1 u.d. mod1
and (kn)n≥1 is uniformly distributed on Z.

Note that if (kn)n≥0 is Hartman u.d. on Z and if and only if letting

F (N, z) :=
1

N

N−1∑
n=0

zkn , (N = 1, 2, · · · )

we have F (N, 1) = 1 for all N ≥ 1 and if |z | = 1, z ̸= 1 we have
limN→∞ F (N, z) = 0.

So (n)n≥1 is Hartman u.d. on Z;



Hartman and Good Universal Sequences

1. The natural numbers: The sequence (n)∞n=1 is L1-good
universal. This is Birkhoff’s pointwise ergodic theorem.
2. Polynomial like sequences: Note if ϕ(x) is a polynomial such
that ϕ(N) ⊆ N (Bourgain, Nair) and p > 1 then (ϕ(n))∞n=1 and
(ϕ(pn))

∞
n=1 (Nair) where pn is nth prime are Lp good universal

sequences.
3 Specific sequences of integers that satisfy conditions H include
kn = [g(n)] (n = 1, 2, . . .) where
I. g(n) = nω if ω > 1 and ω /∈ N.
II. g(n) = e log

γ n for γ ∈ (1, 32).
III. g(n) = P(n) = bkn

k + . . .+ b1n + b0 for bk , . . . , b1 not all
rational multiplies of the same real number.
4. Many other families of sequences, random and deterministic.



Good Universality

We say (an)n≥1 ⊆ N is Lp good universal if given f ∈ Lp(X , β, µ)
for any (X , β, µ) the limit

f (x) = lim
N→∞

1

N

N∑
n=1

f (T anx),

exists µ almost everywhere.

When is

f (x) =

∫
X
fdµ,

µ almost everywhere? Its crutial for our considerations.



Good Universality

We say (an)n≥1 is Lp good universal if given any dynamical system
(X , β, µ,T ) and f ∈ Lp(X , β, µ) the limit

ℓf ,T (x) = lim
N→∞

1

N

N∑
n=1

f (T anx),

exists µ almost everywhere.

Suppose (ki )
∞
i=1 is Hartman uniformly distributed, and Lp-good

universal for p ∈ [1, 2] and that the dynamical system (X ,B, µ,T )
is ergodic. Then the limit ℓT ,f (x), defined in the introduction,
exists and equals

∫
X fdµ for µ almost all x .



New Work

Suppose (kn)≥1 in Hartman uniformly distributed and Lp good
univeral. Then

For s with ℜ(s) > −1
2 we have

lim
N→∞

1

N

N∑
n=1

ζ(s + iT knx) = ℓ(s) :=

∫
R

ζ(s + it)

1 + t2
dt

for almost all x . If ℜ(s) > 1 then ℓ(s) = ζ(s + 1)− 2
s(2−s) and if

ℜ(s) < 1 then ℓ(s) = ζ(s + 1).



New Work II

Suppose (kn)≥1 in Hartman uniformly distributed and Lp good
univeral. Then the Lindelhöf being true is equivalent for any k ∈ N
to the existence of either side of the limit

lim
N→∞

1

N

N∑
n=1

|ζ(s + iT knx)|k =

∫
R

|ζ(s + it)|k

1 + t2
dt

for almost all x .



New Work III

Suppose (kn)≥1 in Hartman uniformly distributed and Lp good
univeral. Then the Riemann Hypothsis being true is equivalent for
to the either side of the limit

lim
N→∞

1

N

N∑
n=1

log |ζ(s + iT knx)| =
∑

ℜ(ρ)> 1
2

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣
being zero for almost all x .



Separable Measure Spaces

Suppose (X , β, µ) is a measure space. Given A,B ∈ β, we call
d(A,B) := µ(A∆B) the Hausdorff metric on β. Here of course
A∆B denotes the symmetric difference A\B ∪ B\A. We call
(X , β, µ) separable if the metric space (β, d) is separable.



Dynamical and Stochastic results are related

Consider two ergodic separable dynamical systems (X1, β1, µ1,T1)
and (X2, β2, µ2,T2). Suppose also that µ1 and µ2 are non-atomic.
Then if for a particular sequence of integers (kn)n≥1 for each
f1 ∈ Lp(X1, β, µ1) for all p > 1 we have

lim
N→∞

1

N

N∑
n=1

f1(T
kn
1 x1) =

∫
X1

f1(x1)dµ1,

µ1 almost everywhere, then the same is true with 1 replaced by 2.



Now suppose that (kn)n≥1 is Hartman uniform distributed and Lp

good universal for fixed p ∈ [1,∞) and µ is the Cauchy
distribution µα,β then

lim
N→∞

1

N

N−1∑
n=0

f (s + iXkn(ω)) =
α

π

∫
R

f (s + iτ)

α2 + (τ − β)2
dτ,

for almost all ω in R.
We can specialise this to

lim
N→∞

1

N

N∑
n=1

log

∣∣∣∣ζ (1

2
+

1

2
iXkn(ω)

)∣∣∣∣ = ∑
Re(ρ)> 1

2

log

∣∣∣∣ ρ

1− ρ

∣∣∣∣ ,
for almost all ω in R.
Again, the Riemann Hypothesis follows if either side is zero
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Thank You For Listening


