Log-behaviour of quasi-polynomial-like functions

Krystian Gajdzica 32 ÈMES Journées Arithmétiques 2023, Nancy 3–7 July 2023

Institute of Mathematics @ Jagiellonian University e-mail: KRYSTIAN.GAJDZICA@DOCTORAL.UJ.EDU.PL

Introduction

Definition: Quasi-polynomial

Let $k \in \mathbb{N}$ and $M_1 \in \mathbb{N}_+$. A quasi-polynomial f(n) of degree k is an expression of the form

$$f(n) = t_k(n)n^k + t_{k-1}(n)n^{k-1} + \cdots + t_0(n),$$

where the coefficients $t_0(n), \ldots, t_k(n)$ depend on the residue class of $n \mod M_1$.

Definition: Quasi-polynomial

Let $k \in \mathbb{N}$ and $M_1 \in \mathbb{N}_+$. A quasi-polynomial f(n) of degree k is an expression of the form

$$f(n) = t_k(n)n^k + t_{k-1}(n)n^{k-1} + \cdots + t_0(n),$$

where the coefficients $t_0(n), \ldots, t_k(n)$ depend on the residue class of $n \mod M_1$.

Definition: Quasi-polynomial-like function

Let $d, l \in \mathbb{N}$, $M_2 \in \mathbb{N}_+$ and $d \leq l$. We say that a function g(n) is a quasi-polynomial-like function if g(n) might be written as

$$g(n) = \tilde{t}_l(n)n' + \tilde{t}_{l-1}(n)n'^{-1} + \cdots + \tilde{t}_d(n)n^d + o(n^d),$$

where the coefficients $\tilde{t}_d(n), \ldots, \tilde{t}_l(n)$ depend on the residue class of $n \mod M_2$.

Krystian Gajdzica

Let $k \in \mathbb{N}_+$.

Let $k \in \mathbb{N}_+$. Let $\mathcal{A} = (a_i)_{i=1}^\infty$ be a non-decreasing sequence of positive integers.

Let $k \in \mathbb{N}_+$. Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_j)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_1, \lambda_2, \dots, \lambda_j \in \{a_1, a_2, \dots, a_k\}$

Let $k \in \mathbb{N}_+$. Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_j)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_1, \lambda_2, \dots, \lambda_j \in \{a_1, a_2, \dots, a_k\}$ and

$$n = \lambda_1 + \lambda_2 + \dots + \lambda_j.$$

Let $k \in \mathbb{N}_+$. Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_j)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_1, \lambda_2, \dots, \lambda_j \in \{a_1, a_2, \dots, a_k\}$ and

$$n = \lambda_1 + \lambda_2 + \dots + \lambda_j.$$

Moreover, two restricted partitions are considered the same if they differ only in the order of their parts.

Let $k \in \mathbb{N}_+$. Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_j)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_1, \lambda_2, \dots, \lambda_j \in \{a_1, a_2, \dots, a_k\}$ and

$$n = \lambda_1 + \lambda_2 + \dots + \lambda_j.$$

Moreover, two restricted partitions are considered the same if they differ only in the order of their parts.

Definition: The restricted partition function

The restricted partition function $p_{\mathcal{A},k}(n)$ counts restricted partitions of n.

Example: Restricted Plane Partitions Let $\mathcal{A} = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, ...)$ **Example: Restricted Plane Partitions** Let A = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, ...) and k = 8.

Example: Restricted Plane Partitions

Let $\mathcal{A} = (1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, ...)$ and k = 8. For n = 4, we have $p_{\mathcal{A},8}(4) = 11$:

Example: Restricted Plane Partitions

Let $\mathcal{A} = (1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, ...)$ and k = 8. For n = 4, we have $p_{\mathcal{A},8}(4) = 11$:

4 = 4	4 = 2 + 2
4 = 4	4 = <mark>2</mark> + 2
4 = 3 + 1	4 = 2 + 2
4 = 3 + 1	4 = 2 + 1 + 1
4 = 3 + 1	4 = 2 + 1 + 1

and 4 = 1 + 1 + 1 + 1.

Example: Restricted Plane Partitions

Let $\mathcal{A} = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, ...)$ and k = 8. For n = 4, we have $p_{\mathcal{A},8}(4) = 11$:

4 = 4	4 = 2 + 2
4 = 4	4 = <mark>2</mark> + 2
4 = 3 + 1	4 = 2 + 2
4 = 3 + 1	4 = 2 + 1 + 1
4 = 3 + 1	4 = 2 + 1 + 1

and 4 = 1 + 1 + 1 + 1.

Remark: Connection between $p_{\mathcal{A},k}(n)$ and p(n)If " $k = \infty$ " and $\mathcal{A} = (1, 2, 3, ...)$, then $p_{\mathcal{A},\infty}(n) = p(n)$. **Theorem (Bell 1943)** The function $p_{A,k}(n)$ is a quasi-polynomial — it takes the form

$$p_{\mathcal{A},k}(n) = t_{k-1}(n)n^{k-1} + t_{k-2}(n)n^{k-2} + \cdots + t_0(n),$$

where each $t_j(n)$ depends on $n \mod lcm(a_1, a_2, ..., a_k)$ for $0 \leq j \leq k - 1$.

Theorem (Bell 1943) The function $p_{A,k}(n)$ is a quasi-polynomial — it takes the form

$$p_{\mathcal{A},k}(n) = t_{k-1}(n)n^{k-1} + t_{k-2}(n)n^{k-2} + \cdots + t_0(n),$$

where each $t_j(n)$ depends on $n \mod lcm(a_1, a_2, ..., a_k)$ for $0 \leq j \leq k - 1$.

Remark

We can say something more about these coefficients $t_i(n)$:

- Almkvist
- Beck, Gessel and Komatsu
- Israilov

Definition: A log-concave sequence A sequence $(c_i)_{i=0}^{\infty} \in \mathbb{R}^{\infty}$ is log-concave if $c_n^2 > c_{n-1}c_{n+1}$ for $n \ge 1$.

Definition: A log-concave sequence A sequence $(c_i)_{i=0}^{\infty} \in \mathbb{R}^{\infty}$ is log-concave if $c_n^2 > c_{n-1}c_{n+1}$ for $n \ge 1$.

Theorem (Nicolas 1978, DeSalvo-Pak 2015) Sequence p(n) is log-concave for all n > 25. In other words, we have

 $p^{2}(n) > p(n+1)p(n-1)$

for every n > 25.

Definition: A log-concave sequence A sequence $(c_i)_{i=0}^{\infty} \in \mathbb{R}^{\infty}$ is log-concave if $c_n^2 > c_{n-1}c_{n+1}$ for $n \ge 1$.

Theorem (Nicolas 1978, DeSalvo-Pak 2015) Sequence p(n) is log-concave for all n > 25. In other words, we have

 $p^{2}(n) > p(n+1)p(n-1)$

for every n > 25.

Remark

There are a lot of similar results for other variations of the partition function (e.g. the *k*-regular partition function $p_k(n)$, the *k*-colored partition function $p_{-k}(n)$, the plane partition function $pp(n), \ldots$).

Theorem (Bessenrodt-Ono 2016) If a, b are integers such that $a, b \ge 2$ and a + b > 9, then

p(a)p(b) > p(a+b).

The r-log-concavity problem

• Let $(c_n)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_+$ be fixed.

- Let $(c_n)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_+$ be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

- Let $(c_n)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_+$ be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$\widehat{\mathcal{L}}_c(n) = c_{n+1}^2 - c_n c_{n+2}$$

- Let $(c_n)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_+$ be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$\begin{aligned} \widehat{\mathcal{L}}_{c}(n) &= c_{n+1}^{2} - c_{n}c_{n+2} \\ \widehat{\mathcal{L}}_{c}^{i}(n) &= (\widehat{\mathcal{L}}_{c}^{i-1}(n+1))^{2} - \widehat{\mathcal{L}}_{c}^{i-1}(n+2)\widehat{\mathcal{L}}_{c}^{i-1}(n) \end{aligned}$$

- Let $(c_n)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_+$ be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$\widehat{\mathcal{L}}_{c}(n) = c_{n+1}^{2} - c_{n}c_{n+2} \widehat{\mathcal{L}}_{c}^{i}(n) = (\widehat{\mathcal{L}}_{c}^{i-1}(n+1))^{2} - \widehat{\mathcal{L}}_{c}^{i-1}(n+2)\widehat{\mathcal{L}}_{c}^{i-1}(n)$$

If L
_c(n), L
_c²(n),..., L
_c^r(n) > 0 for all sufficiently large values of n, then c_n is said to be asymptotically r-log-concave.

- Let $(c_n)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_+$ be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$\begin{aligned} \widehat{\mathcal{L}}_{c}(n) &= c_{n+1}^{2} - c_{n}c_{n+2} \\ \widehat{\mathcal{L}}_{c}^{i}(n) &= (\widehat{\mathcal{L}}_{c}^{i-1}(n+1))^{2} - \widehat{\mathcal{L}}_{c}^{i-1}(n+2)\widehat{\mathcal{L}}_{c}^{i-1}(n) \end{aligned}$$

If L̂_c(n), L̂_c²(n),..., L̂_c^r(n) > 0 for all sufficiently large values of n, then c_n is said to be asymptotically r-log-concave.

Theorem (Hou-Zhang 2018) For every positive integer r, the sequence $(p(n))_{n \ge 0}$ is asymptotically r-log-concave.

• Let $(\omega_n)_{n \ge 0}$ be a sequence of real numbers

- Let $(\omega_n)_{n \ge 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_i and α_j with

 $\alpha_0 < \alpha_1 < \cdots < \alpha_m$

- Let $(\omega_n)_{n \ge 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_i and α_j with α₀ < α₁ < · · · < α_m such that

$$\lim_{n\to\infty}n^{\alpha_m}\left(\omega_n-\sum_{i=0}^m\frac{c_i}{n^{\alpha_i}}\right)=0$$

- Let $(\omega_n)_{n \ge 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_i and α_j with α₀ < α₁ < · · · < α_m such that

$$\lim_{n\to\infty}n^{\alpha_m}\left(\omega_n-\sum_{i=0}^m\frac{c_i}{n^{\alpha_i}}\right)=0$$

• We call
$$g = \sum_{n=0}^{m} \frac{c_i}{n^{\alpha_i}}$$
 the Puiseux-type approximation of ω_n

- Let $(\omega_n)_{n \ge 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_i and α_j with α₀ < α₁ < · · · < α_m such that

$$\lim_{n\to\infty}n^{\alpha_m}\left(\omega_n-\sum_{i=0}^m\frac{c_i}{n^{\alpha_i}}\right)=0$$

• We call $g = \sum_{n=0}^{m} \frac{c_i}{n^{\alpha_i}}$ the Puiseux-type approximation of ω_n

Theorem (Hou-Zhang 2018) Let $(b_n)_{n\geq 0}$ be a positive sequence such that the Puiseux-type approximation of $b_{n+2}b_n/b_{n+1}^2$ takes the form

$$\frac{b_{n+2}b_n}{b_{n+1}^2} = 1 + \frac{c_1}{n^{\alpha_1}} + \dots + \frac{c_m}{n^{\alpha_m}} + o\left(\frac{1}{n^{\alpha_m}}\right).$$

If $c_1 < 0$ and $\alpha_1 < 2$, then $(b_n)_{n \ge 0}$ is asymptotically $\lfloor \alpha_m / \alpha_1 \rfloor$ -log-concave.

Krystian Gajdzica

Theorem (G. 202?) Let $I, r \in \mathbb{N}_+$ be such that $I \ge 2r$. Suppose further that we have

$$f(n) = a_{l}(n)n^{l} + a_{l-1}(n)n^{l-1} + \dots + a_{l-2r}(n)n^{l-2r} + o(n^{l-2r}),$$

where the coefficients $a_{1-2r}(n), \ldots, a_l(n)$ might depend on the residue class of $n \pmod{M}$ for some positive integer $M \ge 2$. Then the sequence $(f(n))_{n=0}^{\infty}$ is asymptotically r-log-concave if and only if all the numbers $a_{l-2r}(n), \ldots, a_l(n)$ are independent of the residue class of $n \pmod{M}$. **Theorem (G. 202?)** Let $I, r \in \mathbb{N}_+$ be such that $I \ge 2r$. Suppose further that we have

$$f(n) = a_{l}(n)n^{l} + a_{l-1}(n)n^{l-1} + \dots + a_{l-2r}(n)n^{l-2r} + o(n^{l-2r}),$$

where the coefficients $a_{1-2r}(n), \ldots, a_l(n)$ might depend on the residue class of $n \pmod{M}$ for some positive integer $M \ge 2$. Then the sequence $(f(n))_{n=0}^{\infty}$ is asymptotically r-log-concave if and only if all the numbers $a_{l-2r}(n), \ldots, a_l(n)$ are independent of the residue class of $n \pmod{M}$.

Theorem (G. 202?) Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$, $r \in \mathbb{N}_+$ and k > 2r be fixed. Then the sequence $(p_{\mathcal{A},k}(n))_{n=0}^{\infty}$ is asymptotically r-log-concave if and only if we have that $\gcd A = 1$ for all (k - 2r)-multisubsets A of $\{a_1, a_2, \ldots, a_k\}$.

$\mathcal{A} = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, \ldots)$

Figure 1: Values of $\widehat{\mathcal{L}}^2_{P,\mathcal{A},10}(n)$ for $n \leq 10^5$

 $\mathcal{A} = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, \ldots)$

Figure 2: Values of $\widehat{\mathcal{L}}_{p \ A, 11}^2$ (*n*) for $n \leq 10^5$

 $\mathcal{A} = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, \ldots)$

Figure 1: Values of $\widehat{\mathcal{L}}^2_{P,\mathcal{A},10}(n)$ for $n \leq 10^5$

Figure 3: Values of
$$\widehat{\mathcal{L}}^{3}_{p_{\mathcal{A},12}}(n)$$
 for $n \leq 10^6$

800 00

Figure 4: Values of
$$\widehat{\mathcal{L}}^{3}_{p,\mathcal{A},13}(n)$$
 for $n \leq 10^{6}$

4 × 10¹⁴³

 2×10^{143}

 -2×10^{143}

 -4×10^{143}

• A sequence $(c_i)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_n^2 \ge c_{n+1}c_{n-1}$ for every $n \ge 1$.

- A sequence $(c_i)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_n^2 \ge c_{n+1}c_{n-1}$ for every $n \ge 1$.
- It fulfills the third order Turán inequality if for all $n \ge 1$, we have

$$4(c_n^2 - c_{n+1}c_{n-1})(c_{n+1}^2 - c_nc_{n+2}) \ge (c_nc_{n+1} - c_{n-1}c_{n+2})^2$$

- A sequence $(c_i)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_n^2 \ge c_{n+1}c_{n-1}$ for every $n \ge 1$.
- It fulfills the third order Turán inequality if for all $n \ge 1$, we have

$$4(c_n^2 - c_{n+1}c_{n-1})(c_{n+1}^2 - c_nc_{n+2}) \ge (c_nc_{n+1} - c_{n-1}c_{n+2})^2$$

If J^{d,n}_c(X) are the Jensen polynomials of degree d and shift n associated to the sequence c := (c_i)[∞]_{i=0}:

- A sequence $(c_i)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_n^2 \ge c_{n+1}c_{n-1}$ for every $n \ge 1$.
- It fulfills the third order Turán inequality if for all $n \ge 1$, we have

$$4(c_n^2 - c_{n+1}c_{n-1})(c_{n+1}^2 - c_nc_{n+2}) \ge (c_nc_{n+1} - c_{n-1}c_{n+2})^2$$

If J^{d,n}_c(X) are the Jensen polynomials of degree d and shift n associated to the sequence c := (c_i)[∞]_{i=0}:

$$J_c^{d,n}(X) := \sum_{i=0}^d \binom{d}{i} c_{n+i} X^i,$$

- A sequence $(c_i)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_n^2 \ge c_{n+1}c_{n-1}$ for every $n \ge 1$.
- It fulfills the third order Turán inequality if for all $n \ge 1$, we have

$$4(c_n^2 - c_{n+1}c_{n-1})(c_{n+1}^2 - c_nc_{n+2}) \ge (c_nc_{n+1} - c_{n-1}c_{n+2})^2$$

If J^{d,n}_c(X) are the Jensen polynomials of degree d and shift n associated to the sequence c := (c_i)[∞]_{i=0}:

$$J_c^{d,n}(X) := \sum_{i=0}^d \binom{d}{i} c_{n+i} X^i,$$

then $(c_i)_{i=0}^{\infty}$ satisfies the order *d* Turán inequality at *n* if and only if $J_c^{d,n-1}(X)$ is hyperbolic

Krystian Gajdzica

- A sequence $(c_i)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_n^2 \ge c_{n+1}c_{n-1}$ for every $n \ge 1$.
- It fulfills the third order Turán inequality if for all $n \ge 1$, we have

$$4(c_n^2 - c_{n+1}c_{n-1})(c_{n+1}^2 - c_nc_{n+2}) \ge (c_nc_{n+1} - c_{n-1}c_{n+2})^2$$

If J^{d,n}_c(X) are the Jensen polynomials of degree d and shift n associated to the sequence c := (c_i)[∞]_{i=0}:

$$J_c^{d,n}(X) := \sum_{i=0}^d \binom{d}{i} c_{n+i} X^i,$$

then $(c_i)_{i=0}^{\infty}$ satisfies the order *d* Turán inequality at *n* if and only if $J_c^{d,n-1}(X)$ is hyperbolic — all of its roots are real numbers.

Krystian Gajdzica

Theorem (Griffin-Ono-Rolen-Zagier 2019)

Suppose that $\alpha(n)$, (E(n)) and $(\delta(n))$ are positive real sequences with $\lim_{n\to\infty} \delta(n) = 0$, and that $F(t) = \sum_{i=0}^{\infty} c_i t^i$ is a formal power series with complex coefficients. For a fixed $d \ge 1$, suppose that there are real numbers $(C_0(n)), \ldots, (C_d(n))$, with $\lim_{n\to\infty} C_i(n) = c_i$ for $0 \le i \le d$, such that for $0 \le j \le d$, we have

$$rac{lpha(n+j)}{lpha(n)} E(n)^{-j} = \sum_{i=0}^d C_i(n) \delta(n)^i j^i + o(\delta(n)^d) \quad ext{ as } n o \infty.$$

Then, we have

$$\lim_{n\to\infty}\left(\frac{\delta(n)^{-d}}{\alpha(n)}J_{\alpha}^{d,n}\left(\frac{\delta(n)X-1}{E(n)}\right)\right)=d!\sum_{k=0}^{d}(-1)^{d-k}c_{d-k}X^{k}/k!,$$

uniformly for X in any compact subset of \mathbb{R} .

Let $k, s \in \mathbb{N}$. Suppose further that g(n) is a quasi-polynomial-like function of the form

$$g(n) = t_k(n)n^k + t_{k-1}(n)n^{k-1} + \cdots + t_s(n)n^s + o(n^s),$$

where the coefficients $t_s(n), \ldots, t_k(n)$ might depend on the residue class of $n \mod M$ for some $M \ge 2$. If $t_k(n), t_{k-1}(n), \ldots, t_{k-d}(n)$ are independent of the residue class of $n \mod M$, then g(n) satisfies the order j Turán inequality for all sufficiently large values of n and $1 \le j \le d$.

Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let k > d. If gcd A = 1 for every (k - d)-multisubset $A \subset \{a_1, \ldots, a_k\}$, then the sequence $(p_{\mathcal{A},k}(n))_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leq j \leq d$.

Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let k > d. If gcd A = 1 for every (k - d)-multisubset $A \subset \{a_1, \ldots, a_k\}$, then the sequence $(p_{\mathcal{A},k}(n))_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leq j \leq d$.

• $\mathcal{A} = (1, 2, 2, 3, 3, 3, ...) \& c_n = p_{\mathcal{A},k}(n)$

•
$$f_k(n) = 4(c_n^2 - c_{n+1}c_{n-1})(c_{n+1}^2 - c_nc_{n+2}) - (c_nc_{n+1} - c_{n-1}c_{n+2})^2$$

Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let k > d. If gcd A = 1 for every (k - d)-multisubset $A \subset \{a_1, \ldots, a_k\}$, then the sequence $(p_{\mathcal{A},k}(n))_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leq j \leq d$.

- $\mathcal{A} = (1, 2, 2, 3, 3, 3, ...) \& c_n = p_{\mathcal{A},k}(n)$
- $f_k(n) = 4(c_n^2 c_{n+1}c_{n-1})(c_{n+1}^2 c_nc_{n+2}) (c_nc_{n+1} c_{n-1}c_{n+2})^2$

Figure 5: Values of $f_6(n)$ for $n \leq 10^5$

Let $\mathcal{A} = (a_i)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let k > d. If gcd A = 1 for every (k - d)-multisubset $A \subset \{a_1, \ldots, a_k\}$, then the sequence $(p_{\mathcal{A},k}(n))_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leq j \leq d$.

- $\mathcal{A} = (1, 2, 2, 3, 3, 3, ...) \& c_n = p_{\mathcal{A},k}(n)$
- $f_k(n) = 4(c_n^2 c_{n+1}c_{n-1})(c_{n+1}^2 c_nc_{n+2}) (c_nc_{n+1} c_{n-1}c_{n+2})^2$

Research plan for the future

Let
$$\mathcal{A} = (a_i)_{i=1}^{\infty}$$
 and $k \in \mathbb{N}_+$ be fixed, and let $\sigma_{\mathcal{A}}(j) = \sum_{\substack{i=1 \ a_i \mid j}}^{i=1} a_i$

Let
$$\mathcal{A}=(a_i)_{i=1}^\infty$$
 and $k\in\mathbb{N}_+$ be fixed, and let $\sigma_\mathcal{A}(j)=\sum_{\substack{i=1\a_i\mid j}a_i}^{i=1}a_i$

$$\sum_{n=0}^{\infty} p_{\mathcal{A},k}(n)q^n = \prod_{i=1}^k \frac{1}{1-q^{a_i}}$$

Let
$$\mathcal{A} = (a_i)_{i=1}^\infty$$
 and $k \in \mathbb{N}_+$ be fixed, and let $\sigma_\mathcal{A}(j) = \sum_{\substack{i=1\\a_i \mid j}}^k a_i$

$$\sum_{n=0}^{\infty}p_{\mathcal{A},k}(n)q^n=\prod_{i=1}^krac{1}{1-q^{a_i}}
onumber \ =\left(\prod_{i=1}^krac{1}{1-q^{a_i}}
ight)^x$$

Let
$$\mathcal{A} = (a_i)_{i=1}^\infty$$
 and $k \in \mathbb{N}_+$ be fixed, and let $\sigma_\mathcal{A}(j) = \sum_{\substack{i=1 \ a_i \mid j}}^k a_i$

$$\sum_{n=0}^{\infty} p_{\mathcal{A},k}(n)q^n = \prod_{i=1}^k \frac{1}{1-q^{a_i}}$$

$$\sum_{n=0}^{\infty} f_{A,n}(x)q^n = \left(\prod_{i=1}^k \frac{1}{1-q^{a_i}}\right)^{\lambda}$$

Krystian Gajdzica

Let
$$\mathcal{A}=(a_i)_{i=1}^\infty$$
 and $k\in\mathbb{N}_+$ be fixed, and let $\sigma_\mathcal{A}(j)=\sum_{\substack{i=1\a_i\mid j\\a_i\mid j}}^ka_i$

$$\sum_{n=0}^{\infty} p_{\mathcal{A},k}(n) q^n = \prod_{i=1}^k rac{1}{1-q^{a_i}}$$

$$\sum_{n=0}^{\infty} f_{A,n}(x)q^n = \left(\prod_{i=1}^k \frac{1}{1-q^{a_i}}\right)^{\lambda}$$

Proposition We have that $f_{A,0}(x) = 1$. Moreover, if $n \ge 1$, then

$$f_{A,n}(x) = \frac{x}{n} \sum_{j=1}^{n} \sigma_A(j) f_{A,n-j}(x) \text{ and } f'_{A,n}(x) = \sum_{j=1}^{n} \frac{\sigma_A(j)}{j} f_{A,n-j}(x),$$

Let
$$\mathcal{A}=(a_i)_{i=1}^\infty$$
 and $k\in\mathbb{N}_+$ be fixed, and let $\sigma_\mathcal{A}(j)=\sum_{\substack{i=1\a_i\mid j}a_i}^ka_i$

$$\sum_{n=0}^{\infty} p_{\mathcal{A},k}(n) q^n = \prod_{i=1}^k rac{1}{1-q^{a_i}}$$

$$\sum_{n=0}^{\infty} f_{A,n}(x)q^n = \left(\prod_{i=1}^k \frac{1}{1-q^{a_i}}\right)^{s}$$

Proposition We have that $f_{A,0}(x) = 1$. Moreover, if $n \ge 1$, then

$$f_{A,n}(x) = \frac{x}{n} \sum_{j=1}^{n} \sigma_A(j) f_{A,n-j}(x) \text{ and } f'_{A,n}(x) = \sum_{j=1}^{n} \frac{\sigma_A(j)}{j} f_{A,n-j}(x),$$

Problem Investigate the log-behaviour of $f_{A,n}(x)$.

Krystian Gajdzica

- K. Gajdzica, A note on the higher order Turán inequalities for quasipolynomial-like functions, (in preparation).
- K. Gajdzica, Log-concavity of the restricted partition function p_A(n, k) and the new Bessenrodt-Ono type inequality, J. Number Theory, vol. 251 (2023), 31-65.
- K. Gajdzica, Restricted partition functions and the r-log-concavity of quasi-polynomial-like functions, https://arxiv.org/abs/2305. 00085, 2023.
- M. Griffin, K. Ono, L. Rolen, D. Zagier, *Jensen polynomials for the Riemann zeta function and other sequences*, Proc. Natl. Acad. Sci. USA 116 (2019), 11103–11110.
- Q.H. Hou, Z.R. Zhang, Asymptotic r-log-convexity and P-recursive sequences, J. Symbolic Comput. 93 (2019), 21-33.

Q.H. Hou, Z.R. Zhang, *r-log-concavity of partition functions*, Ramanujan J 48 (2019), 117–129.