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Introduction



Quasi-polynomials & Quasi-polynomial-like functions

Definition: Quasi-polynomial
Let k € N and M; € N;. A quasi-polynomial f(n) of degree k is an
expression of the form

f(n) = te(n)n* + ti_1(n)n* "t 4 - 4 to(n),

where the coefficients ty(n),. .., tx(n) depend on the residue class of n
mod M;.
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Quasi-polynomials & Quasi-polynomial-like functions

Definition: Quasi-polynomial
Let k € N and M; € N;. A quasi-polynomial f(n) of degree k is an

expression of the form
f(n) = t(n)n* + ti_1(n)n*"2 + - + to(n),

where the coefficients ty(n),. .., tx(n) depend on the residue class of n
mod M;.

Definition: Quasi-polynomial-like function
Let d,/ € N, M, € Ny and d < /. We say that a function g(n) is a
quasi-polynomial-like function if g(n) might be written as

g(n) = t(nn' +{_1(n)n'~t + - + F4(n)n? + o(n?),

where the coefficients #4(n),...,f(n) depend on the residue class of n
mod M.
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The restricted partition function p 4«

Definition: A restricted partition
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The restricted partition function p 4«

Definition: A restricted partition
Let k S NJr.
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The restricted partition function p 4«

Definition: A restricted partition

Let k € Ny. Let A = (a;);2; be a non-decreasing sequence of positive
integers.
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The restricted partition function p 4«

Definition: A restricted partition

Let k € Ny. Let A = (a;);2; be a non-decreasing sequence of positive
integers. A restricted partition A = (A1, X2, ..., ;) of n € N is a sequence
such that Aq, Ao, ..., \j € {a1,a,..., ak}
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The restricted partition function p 4 «(n)

Definition: A restricted partition

Let k € Ny. Let A = (a;);2; be a non-decreasing sequence of positive
integers. A restricted partition A = (A1, X2, ..., ;) of n € N is a sequence
such that A\j, Ao,...,A\j € {a1,a,...,ac} and

n=X+d+ A

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 2/16



The restricted partition function p 4 .(n

Definition: A restricted partition

Let k € Ny. Let A = (a;);2; be a non-decreasing sequence of positive
integers. A restricted partition A = (A1, X2, ..., ;) of n € N is a sequence
such that A\j, Ao,...,A\j € {a1,a,...,ac} and

n=X+d+ A

Moreover, two restricted partitions are considered the same if they differ

only in the order of their parts.
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The restricted partition function p 4 .(n

Definition: A restricted partition

Let k € Ny. Let A = (a;);2; be a non-decreasing sequence of positive
integers. A restricted partition A = (A1, X2, ..., ;) of n € N is a sequence
such that A\j, Ao,...,A\j € {a1,a,...,ac} and

n=X+d+ A

Moreover, two restricted partitions are considered the same if they differ
only in the order of their parts.

Definition: The restricted partition function
The restricted partition function p4 x(n) counts restricted partitions of n.
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An example of the restricted partition function

Example: Restricted Plane Partitions
Let A=(1,2,2,3,3,3,4,4,4,4,5,5,...)
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An example of the restricted partition function

Example: Restricted Plane Partitions
Let A=(1,2,2,3,3,3,4,4,4,4,5,5,...) and k = 8.
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An example of the restricted partition function

Example: Restricted Plane Partitions
Let A=1(1,2,2,3,3,3,4,4,4,4,5,5,...) and k = 8. For n =4, we have
pas(4) =11
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An example of the restricted partition function

Example: Restricted Plane Partitions
Let A=1(1,2,2,3,3,3,4,4,4,4,5,5,...) and k = 8. For n =4, we have

pas(4) = 11:
4=14
4—14
4=3+1
4=341
4=3+1

and4=1+4+1+4+1+1.

4=242
4=2+2
4=2+2
4=241+1
4=24+1+1
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An example of the restricted partition function

Example: Restricted Plane Partitions
Let A=1(1,2,2,3,3,3,4,4,4,4,5,5,...) and k = 8. For n =4, we have

pas(4) = 11:
4=14
4—14
4=3+1
4=341
4=3+1

and4=1+4+1+4+1+1.

4=242
4=2+2
4=2+2
4=241+1
4=24+1+1

Remark: Connection between p4 «(n) and p(n)
If "k = 00" and A= (1,2,3,...), then pa o(n) = p(n).
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Bell’s Theorem

Theorem (Bell 1943)
The function p4 (n) is a quasi-polynomial — it takes the form

pak(n) = tia(n)n*™ + -+ to(n),

where each tj(n) depends on n mod lcm(ay, az, ..., ax) for
0<j<k—1
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Bell’s Theorem

Theorem (Bell 1943)
The function p4 (n) is a quasi-polynomial — it takes the form

pax(n) = ti_1(n)n* L + ti_o(n)n* 2 4 - + to(n),
where each tj(n) depends on n mod lcm(ay, az, ..., ax) for
0<j<k—1
Remark

We can say something more about these coefficients ¢;(n):

= Almkvist
= Beck, Gessel and Komatsu

= |srailov
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The Motivation

Definition: A log-concave sequence
A sequence (¢;)?°, € R> is log-concave if ¢2 > ¢,_1¢,yq1 for n > 1.
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Definition: A log-concave sequence
A sequence (¢;)?°, € R> is log-concave if ¢2 > ¢,_1¢,yq1 for n > 1.

Theorem (Nicolas 1978, DeSalvo-Pak 2015)
Sequence p(n) is log-concave for all n > 25. In other words, we have

p*(n) > p(n+ 1)p(n —1)

for every n > 25.
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Definition: A log-concave sequence
A sequence (¢;)2, € R™ is log-concave if ¢2 > ¢,_1¢,yq1 for n > 1.

Theorem (Nicolas 1978, DeSalvo-Pak 2015)
Sequence p(n) is log-concave for all n > 25. In other words, we have

p*(n) > p(n+ 1)p(n —1)
for every n > 25.
Remark
There are a lot of similar results for other variations of the partition func-

tion (e.g. the k-regular partition function px(n), the k-colored partition
function p_(n), the plane partition function pp(n),...).
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The Motivation

The Bessenrodt-Ono
inequality

The log-concavity
problem

The r-log-concavity
problem

The higher order
Turan inequalities
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The log-concavity

problem
The Bessenrodt-Ono The r-log-concavity The higher order
inequality problem Turan inequalities

Theorem (Bessenrodt-Ono 2016)
If a, b are integers such that a,b > 2 and a+ b > 9, then

p(a)p(b) > p(a+ b).
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The r-log-concavity problem




The r-log-concavity

= Let (¢n)72o € R and r € N be fixed.
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The r-log-concavity

= Let (¢n)72o € R and r € N be fixed.

» Define L/(n) recursively by setting

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 7 /16



The r-log-concavity

= Let (¢n)72o € R and r € N be fixed.

» Define L/(n) recursively by setting

~

Ec(n) = Cr27+1 — CnCp+2
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The r-log-concavity

= Let (¢n)72o € R and r € N be fixed.
» Define L/(n) recursively by setting
Ec(n) = Cr27+1 — CnCp+2

£i(n) = (=Y (n+ 1)) — £} (n + )2 (n)
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The r-log-concavity

= Let (¢n)72o € R and r € N be fixed.
» Define L/(n) recursively by setting

~

Lc(n) = Cr27+1 — CnCn+2

£i(n) = (=Y (n+ 1)) — £} (n + )2 (n)

= If Ec(n)72§(n), cey Ef:(n) > 0 for all sufficiently large values of n,
then ¢, is said to be asymptotically r-log-concave.
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The r-log-concavity

= Let (¢n)72o € R and r € N be fixed.

» Define L/(n) recursively by setting

EC(”) = Cap1 — CnCrt2
Ci(n) = (LEH(n+ 1)) = L7 H(n+ 2)L (n)

= If Ec(n)72§(n), cey Ef:(n) > 0 for all sufficiently large values of n,
then ¢, is said to be asymptotically r-log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r, the sequence (p(n))n20 is asymptotically

r-log-concave.
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= Let (wn)n>0 be a sequence of real numbers
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= Let (wn)n>0 be a sequence of real numbers

= Suppose that there exist real numbers ¢; and «; with
g <oy << ap
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= Let (wn)n>0 be a sequence of real numbers

= Suppose that there exist real numbers ¢; and «; with
ag < ay < --- < @, such that

m

q Cj
lim n®" | w, — E =1()
n—00 ni

i=0
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= Let (wn)n>0 be a sequence of real numbers

= Suppose that there exist real numbers ¢; and «; with

ag < ay < --- < @, such that

N
lim n®" | w, — E =0
n— 00 - n<i
i=0
"G
= Wecall g = g —(L the Puiseux-type approximation of w,
n 1
n=0
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= Let (wn)n>0 be a sequence of real numbers

= Suppose that there exist real numbers ¢; and «; with
ag < ay < --- < @, such that

m

. Cj
lim n®" | w, — E =0
n—00 =7 %%
i=0
"G
= Wecall g = E le the Puiseux-type approximation of w,
n 1
n=0

Theorem (Hou-Zhang 2018)
Let (bp)n>0 be a positive sequence such that the Puiseux-type

approximation of by ob,/b2,, takes the form

bn bn C Cm 1
21—+t +o< >
b n

il n&m

nem

If c1 <0 and aq < 2, then (bp)n>o is asymptotically
| aem /v |-log-concave.
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Theorem (G. 2027)
Let I,r € Ny be such that | > 2r. Suppose further that we have

f(n) - a/(n)n’ L alfl(n)nlfl Al ooods 3/72r(n)n/72r +o (n/72r) 7

where the coefficients a;_2,(n), . . ., aj(n) might depend on the residue class

of n (mod M) for some positive integer M > 2. Then the sequence
(f(n)),, is asymptotically r-log-concave if and only if all the numbers
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Theorem (G. 2027)
Let I,r € N be such that | > 2r. Suppose further that we have

f(n) = a,(n)n’ + alfl(n)nlfl NI a/,gr(n)n’72’ +o (nlf2r) ’

where the coefficients a;_2,(n), . . ., aj(n) might depend on the residue class
of n (mod M) for some positive integer M > 2. Then the sequence
(f(n)),, is asymptotically r-log-concave if and only if all the numbers

Theorem (G. 2027)
Let A = (a;)~;, r € Ny and k > 2r be fixed. Then the sequence

(pak(n));=, is asymptotically r-log-concave if and only if we have that
gcd A =1 for all (k — 2r)-multisubsets A of {a1, ap, ..., ax}.
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A=(1,2,2,3,3,3,4,4,4,455,...)

Gx1pM10
4x 1010

2x1

20000 40000 600

—2x10"1®
—4x10"0
—6x10'1°

i . o2 5
Flgure 1: Values of LP.A,IO(H) for n < 10
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20000

Figure 1:
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A=(1,2,2,3,3,3,4,4,4,455,...)
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(n) for n < 10°
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Figure 2: vauesof 2 () for n < 105
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A=(1,2,2,3,3,3,4,4,4,455,...)

1x10124
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Figure 1: Values of 2\2 (n) for n < 10° Figure 2 Values of 2\%

PA,10 (n) for n < 10°
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The higher order Turan
inequalities




The higher order Turan ineqaulities

= A sequence (¢;)?°, satisfies the (second order) Turan inequality if
c2 > cpr1Cn1 for every n > 1.
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The higher order Turan ineqaulities

= A sequence (¢;)?°, satisfies the (second order) Turan inequality if
c2 > cpr1Cn1 for every n > 1.
= |t fulfills the third order Turan inequality if for all n > 1, we have

4(c2 = car16n-1)(C21 — CnCni2) = (CnCnt1 — Coo1Cni2)?
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The higher order Turan ineqaulities

= A sequence (¢;)?°, satisfies the (second order) Turan inequality if
c2 > cpr1Cn1 for every n > 1.
= |t fulfills the third order Turan inequality if for all n > 1, we have

4(c2 = car16n-1)(C21 — CnCni2) = (CnCnt1 — Coo1Cni2)?

= If J&"(X) are the Jensen polynomials of degree d and shift n
associated to the sequence ¢ := (¢;)%:
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The higher order Turan ineqaulities

= A sequence (¢;)?°, satisfies the (second order) Turan inequality if
c2 > cpr1Cn1 for every n > 1.
= |t fulfills the third order Turan inequality if for all n > 1, we have

4(c2 = car16n-1)(C21 — CnCni2) = (CnCnt1 — Coo1Cni2)?

= If J&"(X) are the Jensen polynomials of degree d and shift n
associated to the sequence ¢ := (¢;)%:
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The higher order Turan ineqaulities

= A sequence (¢;)?°, satisfies the (second order) Turan inequality if
c2 > cpr1Cn1 for every n > 1.

= |t fulfills the third order Turan inequality if for all n > 1, we have

4(c2 = car16n-1)(C21 — CnCni2) = (CnCnt1 — Coo1Cni2)?

= If J&"(X) are the Jensen polynomials of degree d and shift n
associated to the sequence ¢ := (¢;)%:

d
JEn(X) = N X
G ( ) Z i Cnti ’

i=0

then (¢;)7°, satisfies the order d Turan inequality at n if and only if
J9:n=1(X) is hyperbolic
ot @ w1



The higher order Turan ineqaulities

= A sequence (¢;)?°, satisfies the (second order) Turan inequality if
c2 > cpr1Cn1 for every n > 1.

= |t fulfills the third order Turan inequality if for all n > 1, we have

4(c2 = car16n-1)(C21 — CnCni2) = (CnCnt1 — Coo1Cni2)?

= If J&"(X) are the Jensen polynomials of degree d and shift n
associated to the sequence ¢ := (¢;)%:

d
JEn(X) = N X
G ( ) Z i Cnti ’

i=0

then (¢;)7°, satisfies the order d Turan inequality at n if and only if
J9:n=1(X) is hyperbolic — all of its roots are real numbers.
Krystian Gajdzica 11/ 16



Theorem (Griffin-Ono-Rolen-Zagier 2019)
Suppose that «(n), (E(n)) and (6(n)) are positive real sequences with

limp—oo 6(n) = 0, and that F(t) = > 2, cit' is a formal power series
with complex coefficients. For a fixed d > 1, suppose that there are real
numbers (Co(n)), ..., (Ca(n)), with lim,_o Ci(n) = ¢; for 0 < i < d,
such that for 0 <_j d, we have

. d
O(O,z( ) ZC, )8(n)'j* + o(6(n)?)  as n — oco.
i=0

Then, we have

k=0

uniformly for X in any compact subset of R.
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Theorem (in preparation)
Let k,s € N. Suppose further that g(n) is a quasi-polynomial-like function

of the form
g(n) = tk(n)nk -+ th,l(n)nk*1 + -+ ts(n)n® + o(n®),

where the coefficients ts(n), . .., tx(n) might depend on the residue class of
n mod M for some M > 2. If ty(n), tx—_1(n), ..., tk—a(n) are independent
of the residue class of n mod M, then g(n) satisfies the order j Turan

inequality for all sufficiently large values of n and 1 < j < d.
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Theorem (in preparation)

Let A = (a;)?2, be a weakly increasing sequence of positive integers, and
let k > d. IfgcdA =1 for every (k — d)-multisubset A C {a1,...,ak},
then the sequence (pak(n))., satisfies the order j Turdn inequality for
all but finitely many values of n and 1 < j < d.

Krystian Gajdzica
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Theorem (in preparation)
Let A = (a;)?2, be a weakly increasing sequence of positive integers, and
let k > d. IfgcdA =1 for every (k — d)-multisubset A C {a1,...,ak},

then the sequence (pak(n))., satisfies the order j Turdn inequality for
all but finitely many values of n and 1 < j < d.

= A=(1,2,2,3,3,3,...) & c» = pax(n)

= fi(n) =4(c} — crr1cn—1)(Chy1 — CnCns2) — (CnCnt1 — Cn—1Cns2)’
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Theorem (in preparation)
Let A = (a;)?2, be a weakly increasing sequence of positive integers, and

let k > d. IfgcdA =1 for every (k — d)-multisubset A C {a1,...,ak},
then the sequence (pak(n))., satisfies the order j Turdn inequality for
all but finitely many values of n and 1 < j < d.

= A=(1,2,2,3,3,3,...) & c» = pax(n)

= fi(n) =4(c} — crr1cn—1)(Chy1 — CnCns2) — (CnCnt1 — Cn—1Cns2)’

20000 40000 60D 0000 100000

Figure 5: values of f(n) for n < 105
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Theorem (in preparation)
Let A = (a;)?2, be a weakly increasing sequence of positive integers, and
5o0g ak},

let k > d. If gcd A =1 for every (k — d)-multisubset A C {a,
then the sequence (pak(n))., satisfies the order j Turdn inequality for

all but finitely many values of n and 1 < j < d
= A=(1,2,2,3,3,3,...) & c» = pax(n)
u fk(n) = 4(C3 - Cn+1Cn71)(C3+1 - CnCn+2) - (CnCn+1 - Cn71Cn+2)2

6 1059
0000 100000

I
20000 40000 60D

~1x10%7 3% 10
4x 1089 /

3x10%°
/

—2x10%7
—ax10% 59
2x 1089
1x10%? /
50000 80000 100000

—4x10%
-5x10%7

l 20000 40000
Figure 6: Values of f7(n) for n < 10°

Figure 5: values of f(n) for n < 105
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Research plan for the future




Polynomization

Let A= (a;);2, and k € N, be fixed, and let ga(j) = fozl_ a;

ailj
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Polynomization

Let A= (a;);2, and k € N, be fixed, and let ga(j) = fozl_ a;

ailj
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Polynomization

Let A= (a;);2, and k € N, be fixed, and let ga(j) = fozl_ a;

ailj
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Polynomization
—1 and k € N be fixed, and let ga(j) = fozl aj
ailj

Let A= ()2
> pasd =[[ =%
n=0 i=1
oo k 1 X
Z fan(x)q" = (H 1_ qa,)
n=0 i=1

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 15/ 16



Polynomization
(a));2; and k € N, be fixed, and let oa(j) = Sk a
a/J

Let A=
> pas(e” =] 1=
0 R
n=0 i=1
oo k 1 x
> fan(x)a" = (H lqa,)
n=0 i=1
Proposition
1, then

We have that fag(x) = 1. Moreover, if n >

fa,n(x ZO’A(j )fa,n—j(x) and fA,,( ):ZUAJ()fAn —i(x),
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Polynomization
(a));2; and k € N, be fixed, and let oa(j) = Sk a
a/J

Let A=
> pas(e” =] 1=
0 R
n=0 i=1
oo k 1 x
> fan(x)a" = (H lqa,)
n=0 i=1
Proposition
1, then

We have that fag(x) = 1. Moreover, if n >

fan(x ZUA(J )fan—j(x) and fAn( ):ZUAJ( )fAn —i(x)s

Problem
Investigate the log-behaviour of f ,(x).
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