Log-behaviour of quasi-polynomial-like functions

Krystian Gajdzica
32 ÈMES Journées Arithmétiques 2023, Nancy
3-7 July 2023
Institute of Mathematics @ Jagiellonian University
e-mail: KRYSTIAN.GAJDZICA@DOCTORAL.UJ.EDU.PL

Introduction

Quasi-polynomials \& Quasi-polynomial-like functions

Definition: Quasi-polynomial
Let $k \in \mathbb{N}$ and $M_{1} \in \mathbb{N}_{+}$. A quasi-polynomial $f(n)$ of degree k is an expression of the form

$$
f(n)=t_{k}(n) n^{k}+t_{k-1}(n) n^{k-1}+\cdots+t_{0}(n),
$$

where the coefficients $t_{0}(n), \ldots, t_{k}(n)$ depend on the residue class of n $\bmod M_{1}$.

Quasi-polynomials \& Quasi-polynomial-like functions

Definition: Quasi-polynomial
Let $k \in \mathbb{N}$ and $M_{1} \in \mathbb{N}_{+}$. A quasi-polynomial $f(n)$ of degree k is an expression of the form

$$
f(n)=t_{k}(n) n^{k}+t_{k-1}(n) n^{k-1}+\cdots+t_{0}(n)
$$

where the coefficients $t_{0}(n), \ldots, t_{k}(n)$ depend on the residue class of n $\bmod M_{1}$.

Definition: Quasi-polynomial-like function

Let $d, I \in \mathbb{N}, M_{2} \in \mathbb{N}_{+}$and $d \leqslant I$. We say that a function $g(n)$ is a quasi-polynomial-like function if $g(n)$ might be written as

$$
g(n)=\tilde{t}_{l}(n) n^{\prime}+\tilde{t}_{l-1}(n) n^{\prime-1}+\cdots+\tilde{t}_{d}(n) n^{d}+o\left(n^{d}\right)
$$

where the coefficients $\tilde{t}_{d}(n), \ldots, \tilde{t}_{l}(n)$ depend on the residue class of n $\bmod M_{2}$.

The restricted partition function $p_{\mathcal{A}, k}(n)$

Definition: A restricted partition

The restricted partition function $p_{\mathcal{A}, k}(n)$

Definition: A restricted partition
 Let $k \in \mathbb{N}_{+}$.

The restricted partition function $p_{\mathcal{A}, k}(n)$

Definition: A restricted partition

Let $k \in \mathbb{N}_{+}$. Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers.

The restricted partition function $p_{\mathcal{A}, k}(n)$

Definition: A restricted partition

Let $k \in \mathbb{N}_{+}$. Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$

The restricted partition function $p_{\mathcal{A}, k}(n)$

Definition: A restricted partition

Let $k \in \mathbb{N}_{+}$. Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and

$$
n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j} .
$$

The restricted partition function $p_{\mathcal{A}, k}(n)$

Definition: A restricted partition

Let $k \in \mathbb{N}_{+}$. Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and

$$
n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j} .
$$

Moreover, two restricted partitions are considered the same if they differ only in the order of their parts.

The restricted partition function $p_{\mathcal{A}, k}(n)$

Definition: A restricted partition

Let $k \in \mathbb{N}_{+}$. Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a non-decreasing sequence of positive integers. A restricted partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right)$ of $n \in \mathbb{N}$ is a sequence such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and

$$
n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j} .
$$

Moreover, two restricted partitions are considered the same if they differ only in the order of their parts.

Definition: The restricted partition function
The restricted partition function $p_{\mathcal{A}, k}(n)$ counts restricted partitions of n.

An example of the restricted partition function

Example: Restricted Plane Partitions

Let $\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)$

An example of the restricted partition function

Example: Restricted Plane Partitions
 Let $\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)$ and $k=8$.

An example of the restricted partition function

Example: Restricted Plane Partitions

Let $\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)$ and $k=8$. For $n=4$, we have $p_{\mathcal{A}, 8}(4)=11$:

An example of the restricted partition function

Example: Restricted Plane Partitions

Let $\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)$ and $k=8$. For $n=4$, we have $p_{\mathcal{A}, 8}(4)=11:$

$$
\begin{array}{ll}
4=4 & 4=2+2 \\
4=4 & 4=2+2 \\
4=3+1 & 4=2+2 \\
4=3+1 & 4=2+1+1 \\
4=3+1 & 4=2+1+1
\end{array}
$$

and $4=1+1+1+1$.

An example of the restricted partition function

Example: Restricted Plane Partitions

Let $\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)$ and $k=8$. For $n=4$, we have $p_{\mathcal{A}, 8}(4)=11$:

$$
\begin{array}{ll}
4=4 & 4=2+2 \\
4=4 & 4=2+2 \\
4=3+1 & 4=2+2 \\
4=3+1 & 4
\end{array}=2+1+1 .
$$

and $4=1+1+1+1$.
Remark: Connection between $p_{\mathcal{A}, k}(n)$ and $p(n)$
If " $k=\infty^{\prime \prime}$ and $\mathcal{A}=(1,2,3, \ldots)$, then $p_{\mathcal{A}, \infty}(n)=p(n)$.

Bell's Theorem

Theorem (Bell 1943)

The function $p_{\mathcal{A}, k}(n)$ is a quasi-polynomial - it takes the form

$$
p_{\mathcal{A}, k}(n)=t_{k-1}(n) n^{k-1}+t_{k-2}(n) n^{k-2}+\cdots+t_{0}(n)
$$

where each $t_{j}(n)$ depends on $n \bmod \operatorname{Icm}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ for $0 \leqslant j \leqslant k-1$.

Bell's Theorem

Theorem (Bell 1943)
The function $p_{\mathcal{A}, k}(n)$ is a quasi-polynomial - it takes the form

$$
p_{\mathcal{A}, k}(n)=t_{k-1}(n) n^{k-1}+t_{k-2}(n) n^{k-2}+\cdots+t_{0}(n),
$$

where each $t_{j}(n)$ depends on $n \bmod \operatorname{Icm}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ for $0 \leqslant j \leqslant k-1$.

Remark

We can say something more about these coefficients $t_{j}(n)$:

- Almkvist
- Beck, Gessel and Komatsu
- Israilov

The Motivation

Definition: A log-concave sequence

A sequence $\left(c_{i}\right)_{i=0}^{\infty} \in \mathbb{R}^{\infty}$ is log-concave if $c_{n}^{2}>c_{n-1} c_{n+1}$ for $n \geqslant 1$.

The Motivation

Definition: A log-concave sequence
A sequence $\left(c_{i}\right)_{i=0}^{\infty} \in \mathbb{R}^{\infty}$ is log-concave if $c_{n}^{2}>c_{n-1} c_{n+1}$ for $n \geqslant 1$.
Theorem (Nicolas 1978, DeSalvo-Pak 2015)
Sequence $p(n)$ is log-concave for all $n>25$. In other words, we have

$$
p^{2}(n)>p(n+1) p(n-1)
$$

for every $n>25$.

The Motivation

Definition: A log-concave sequence
A sequence $\left(c_{i}\right)_{i=0}^{\infty} \in \mathbb{R}^{\infty}$ is log-concave if $c_{n}^{2}>c_{n-1} c_{n+1}$ for $n \geqslant 1$.
Theorem (Nicolas 1978, DeSalvo-Pak 2015)
Sequence $p(n)$ is log-concave for all $n>25$. In other words, we have

$$
p^{2}(n)>p(n+1) p(n-1)
$$

for every $n>25$.

Remark

There are a lot of similar results for other variations of the partition function (e.g. the k-regular partition function $p_{k}(n)$, the k-colored partition function $p_{-k}(n)$, the plane partition function $\left.p p(n), \ldots\right)$.

The Motivation

The Motivation

Theorem (Bessenrodt-Ono 2016)
If a, b are integers such that $a, b \geqslant 2$ and $a+b>9$, then

$$
p(a) p(b)>p(a+b)
$$

The r-log-concavity problem

The r-log-concavity

- Let $\left(c_{n}\right)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_{+}$be fixed.

The r-log-concavity

- Let $\left(c_{n}\right)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_{+}$be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

The r-log-concavity

- Let $\left(c_{n}\right)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_{+}$be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$
\widehat{\mathcal{L}}_{c}(n)=c_{n+1}^{2}-c_{n} c_{n+2}
$$

The r-log-concavity

- Let $\left(c_{n}\right)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_{+}$be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$
\begin{aligned}
& \widehat{\mathcal{L}}_{c}(n)=c_{n+1}^{2}-c_{n} c_{n+2} \\
& \widehat{\mathcal{L}}_{c}^{i}(n)=\left(\widehat{\mathcal{L}}_{c}^{i-1}(n+1)\right)^{2}-\widehat{\mathcal{L}}_{c}^{i-1}(n+2) \widehat{\mathcal{L}}_{c}^{i-1}(n)
\end{aligned}
$$

The r-log-concavity

- Let $\left(c_{n}\right)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_{+}$be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$
\begin{aligned}
& \widehat{\mathcal{L}}_{c}(n)=c_{n+1}^{2}-c_{n} c_{n+2} \\
& \widehat{\mathcal{L}}_{c}^{i}(n)=\left(\widehat{\mathcal{L}}_{c}^{i-1}(n+1)\right)^{2}-\widehat{\mathcal{L}}_{c}^{i-1}(n+2) \widehat{\mathcal{L}}_{c}^{i-1}(n)
\end{aligned}
$$

- If $\widehat{\mathcal{L}}_{c}(n), \widehat{\mathcal{L}}_{c}^{2}(n), \ldots, \widehat{\mathcal{L}}_{c}^{r}(n)>0$ for all sufficiently large values of n, then c_{n} is said to be asymptotically r-log-concave.

The r-log-concavity

- Let $\left(c_{n}\right)_{n=0}^{\infty} \in \mathbb{R}^{\infty}$ and $r \in \mathbb{N}_{+}$be fixed.
- Define $\widehat{\mathcal{L}}_{c}^{i}(n)$ recursively by setting

$$
\begin{aligned}
& \widehat{\mathcal{L}}_{c}(n)=c_{n+1}^{2}-c_{n} c_{n+2} \\
& \widehat{\mathcal{L}}_{c}^{i}(n)=\left(\widehat{\mathcal{L}}_{c}^{i-1}(n+1)\right)^{2}-\widehat{\mathcal{L}}_{c}^{i-1}(n+2) \widehat{\mathcal{L}}_{c}^{i-1}(n)
\end{aligned}
$$

- If $\widehat{\mathcal{L}}_{c}(n), \widehat{\mathcal{L}}_{c}^{2}(n), \ldots, \widehat{\mathcal{L}}_{c}^{r}(n)>0$ for all sufficiently large values of n, then c_{n} is said to be asymptotically r-log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r, the sequence $(p(n))_{n \geqslant 0}$ is asymptotically r-log-concave.

- Let $\left(\omega_{n}\right)_{n \geqslant 0}$ be a sequence of real numbers
- Let $\left(\omega_{n}\right)_{n \geqslant 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_{i} and α_{j} with $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}$
- Let $\left(\omega_{n}\right)_{n \geqslant 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_{i} and α_{j} with $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}$ such that

$$
\lim _{n \rightarrow \infty} n^{\alpha_{m}}\left(\omega_{n}-\sum_{i=0}^{m} \frac{c_{i}}{n^{\alpha_{i}}}\right)=0
$$

- Let $\left(\omega_{n}\right)_{n \geqslant 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_{i} and α_{j} with $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}$ such that

$$
\lim _{n \rightarrow \infty} n^{\alpha_{m}}\left(\omega_{n}-\sum_{i=0}^{m} \frac{c_{i}}{n^{\alpha_{i}}}\right)=0
$$

- We call $g=\sum_{n=0}^{m} \frac{c_{i}}{n^{\alpha_{i}}}$ the Puiseux-type approximation of ω_{n}
- Let $\left(\omega_{n}\right)_{n \geqslant 0}$ be a sequence of real numbers
- Suppose that there exist real numbers c_{i} and α_{j} with $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}$ such that

$$
\lim _{n \rightarrow \infty} n^{\alpha_{m}}\left(\omega_{n}-\sum_{i=0}^{m} \frac{c_{i}}{n^{\alpha_{i}}}\right)=0
$$

- We call $g=\sum_{n=0}^{m} \frac{c_{i}}{n^{\alpha_{i}}}$ the Puiseux-type approximation of ω_{n}

Theorem (Hou-Zhang 2018)

Let $\left(b_{n}\right)_{n \geqslant 0}$ be a positive sequence such that the Puiseux-type approximation of $b_{n+2} b_{n} / b_{n+1}^{2}$ takes the form

$$
\frac{b_{n+2} b_{n}}{b_{n+1}^{2}}=1+\frac{c_{1}}{n^{\alpha_{1}}}+\cdots+\frac{c_{m}}{n^{\alpha_{m}}}+o\left(\frac{1}{n^{\alpha_{m}}}\right) .
$$

If $c_{1}<0$ and $\alpha_{1}<2$, then $\left(b_{n}\right)_{n \geqslant 0}$ is asymptotically $\left\lfloor\alpha_{m} / \alpha_{1}\right\rfloor$-log-concave.

Theorem (G. 202?)
Let $I, r \in \mathbb{N}_{+}$be such that $I \geqslant 2 r$. Suppose further that we have

$$
f(n)=a_{l}(n) n^{\prime}+a_{l-1}(n) n^{\prime-1}+\cdots+a_{l-2 r}(n) n^{I-2 r}+o\left(n^{I-2 r}\right),
$$

where the coefficients $a_{\|-2 r}(n), \ldots, a_{l}(n)$ might depend on the residue class of $n(\bmod M)$ for some positive integer $M \geqslant 2$. Then the sequence $(f(n))_{n=0}^{\infty}$ is asymptotically r-log-concave if and only if all the numbers $a_{l-2 r}(n), \ldots, a_{l}(n)$ are independent of the residue class of $n(\bmod M)$.

Theorem (G. 202?)

Let $I, r \in \mathbb{N}_{+}$be such that $I \geqslant 2 r$. Suppose further that we have

$$
f(n)=a_{l}(n) n^{\prime}+a_{l-1}(n) n^{I-1}+\cdots+a_{l-2 r}(n) n^{I-2 r}+o\left(n^{I-2 r}\right)
$$

where the coefficients $a_{\|-2 r}(n), \ldots, a_{l}(n)$ might depend on the residue class of $n(\bmod M)$ for some positive integer $M \geqslant 2$. Then the sequence $(f(n))_{n=0}^{\infty}$ is asymptotically r-log-concave if and only if all the numbers $a_{l}-2 r(n), \ldots, a_{l}(n)$ are independent of the residue class of $n(\bmod M)$.

Theorem (G. 202?)
Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}, r \in \mathbb{N}_{+}$and $k>2 r$ be fixed. Then the sequence $\left(p_{\mathcal{A}, k}(n)\right)_{n=0}^{\infty}$ is asymptotically r-log-concave if and only if we have that $\operatorname{gcd} A=1$ for all $(k-2 r)$-multisubsets A of $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

$$
\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)
$$

Figure 1: Values of $\widehat{\mathcal{L}}_{P_{\mathcal{A}}, 10^{2}}^{(n) f o r n} n \leqslant 10^{5}$

$$
\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)
$$

Figure 1: Values of $\widehat{\mathcal{L}_{p}^{2}}{ }_{\mathcal{A}, 10}(n)$ for $n \leqslant 10^{5}$

Figure 2: Values of $\widehat{\mathcal{L}}_{p_{\mathcal{A}, 11}^{2}}(n)$ for $n \leqslant 10^{5}$

$$
\mathcal{A}=(1,2,2,3,3,3,4,4,4,4,5,5, \ldots)
$$

Figure 1: Values of $\widehat{\mathcal{L}}_{P_{\mathcal{A}}^{2}, 10}^{(n)}$ for $n \leqslant 10^{5}$

Figure 3: Values of $\widehat{\mathcal{L}}_{P_{\mathcal{A}}, 12}{ }^{(n)}$ for $n \leqslant 10^{6}$

Figure 2: Values of $\widehat{\mathcal{L}_{\mathcal{A}}^{2}, 11}(n)$ for $n \leqslant 10^{5}$

Figure 4: Values of $\widehat{\mathcal{L}}_{P_{\mathcal{A}, 13}^{3}}(n)$ for $n \leqslant 10^{6}$

The higher order Turán inequalities

The higher order Turán ineqaulities

- A sequence $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_{n}^{2} \geqslant c_{n+1} c_{n-1}$ for every $n \geqslant 1$.

The higher order Turán ineqaulities

- A sequence $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_{n}^{2} \geqslant c_{n+1} c_{n-1}$ for every $n \geqslant 1$.
- It fulfills the third order Turán inequality if for all $n \geqslant 1$, we have

$$
4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right) \geqslant\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}
$$

The higher order Turán ineqaulities

- A sequence $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_{n}^{2} \geqslant c_{n+1} c_{n-1}$ for every $n \geqslant 1$.
- It fulfills the third order Turán inequality if for all $n \geqslant 1$, we have

$$
4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right) \geqslant\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}
$$

- If $J_{c}^{d, n}(X)$ are the Jensen polynomials of degree d and shift n associated to the sequence $c:=\left(c_{i}\right)_{i=0}^{\infty}$:

The higher order Turán ineqaulities

- A sequence $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_{n}^{2} \geqslant c_{n+1} c_{n-1}$ for every $n \geqslant 1$.
- It fulfills the third order Turán inequality if for all $n \geqslant 1$, we have

$$
4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right) \geqslant\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}
$$

- If $J_{c}^{d, n}(X)$ are the Jensen polynomials of degree d and shift n associated to the sequence $c:=\left(c_{i}\right)_{i=0}^{\infty}$:

$$
J_{c}^{d, n}(X):=\sum_{i=0}^{d}\binom{d}{i} c_{n+i} X^{i}
$$

The higher order Turán ineqaulities

- A sequence $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_{n}^{2} \geqslant c_{n+1} c_{n-1}$ for every $n \geqslant 1$.
- It fulfills the third order Turán inequality if for all $n \geqslant 1$, we have

$$
4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right) \geqslant\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}
$$

- If $J_{c}^{d, n}(X)$ are the Jensen polynomials of degree d and shift n associated to the sequence $c:=\left(c_{i}\right)_{i=0}^{\infty}$:

$$
J_{c}^{d, n}(X):=\sum_{i=0}^{d}\binom{d}{i} c_{n+i} X^{i}
$$

then $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the order d Turán inequality at n if and only if $J_{c}^{d, n-1}(X)$ is hyperbolic

The higher order Turán ineqaulities

- A sequence $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the (second order) Turán inequality if $c_{n}^{2} \geqslant c_{n+1} c_{n-1}$ for every $n \geqslant 1$.
- It fulfills the third order Turán inequality if for all $n \geqslant 1$, we have

$$
4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right) \geqslant\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}
$$

- If $J_{c}^{d, n}(X)$ are the Jensen polynomials of degree d and shift n associated to the sequence $c:=\left(c_{i}\right)_{i=0}^{\infty}$:

$$
J_{c}^{d, n}(X):=\sum_{i=0}^{d}\binom{d}{i} c_{n+i} X^{i}
$$

then $\left(c_{i}\right)_{i=0}^{\infty}$ satisfies the order d Turán inequality at n if and only if $J_{c}^{d, n-1}(X)$ is hyperbolic - all of its roots are real numbers.

Theorem (Griffin-Ono-Rolen-Zagier 2019)

Suppose that $\alpha(n),(E(n))$ and $(\delta(n))$ are positive real sequences with $\lim _{n \rightarrow \infty} \delta(n)=0$, and that $F(t)=\sum_{i=0}^{\infty} c_{i} t^{i}$ is a formal power series with complex coefficients. For a fixed $d \geqslant 1$, suppose that there are real numbers $\left(C_{0}(n)\right), \ldots,\left(C_{d}(n)\right)$, with $\lim _{n \rightarrow \infty} C_{i}(n)=c_{i}$ for $0 \leqslant i \leqslant d$, such that for $0 \leqslant j \leqslant d$, we have

$$
\frac{\alpha(n+j)}{\alpha(n)} E(n)^{-j}=\sum_{i=0}^{d} C_{i}(n) \delta(n)^{i} j^{i}+o\left(\delta(n)^{d}\right) \quad \text { as } n \rightarrow \infty .
$$

Then, we have

$$
\lim _{n \rightarrow \infty}\left(\frac{\delta(n)^{-d}}{\alpha(n)} J_{\alpha}^{d, n}\left(\frac{\delta(n) X-1}{E(n)}\right)\right)=d!\sum_{k=0}^{d}(-1)^{d-k} c_{d-k} X^{k} / k!,
$$

uniformly for X in any compact subset of \mathbb{R}.

Theorem (in preparation)

Let $k, s \in \mathbb{N}$. Suppose further that $g(n)$ is a quasi-polynomial-like function of the form

$$
g(n)=t_{k}(n) n^{k}+t_{k-1}(n) n^{k-1}+\cdots+t_{s}(n) n^{s}+o\left(n^{s}\right),
$$

where the coefficients $t_{s}(n), \ldots, t_{k}(n)$ might depend on the residue class of $n \bmod M$ for some $M \geqslant 2$. If $t_{k}(n), t_{k-1}(n), \ldots, t_{k-d}(n)$ are independent of the residue class of $n \bmod M$, then $g(n)$ satisfies the order j Turán inequality for all sufficiently large values of n and $1 \leqslant j \leqslant d$.

Theorem (in preparation)

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let $k>d$. If $\operatorname{gcd} A=1$ for every $(k-d)$-multisubset $A \subset\left\{a_{1}, \ldots, a_{k}\right\}$, then the sequence $\left(p_{\mathcal{A}, k}(n)\right)_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leqslant j \leqslant d$.

Theorem (in preparation)

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let $k>d$. If $\operatorname{gcd} A=1$ for every $(k-d)$-multisubset $A \subset\left\{a_{1}, \ldots, a_{k}\right\}$, then the sequence $\left(p_{\mathcal{A}, k}(n)\right)_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leqslant j \leqslant d$.

- $\mathcal{A}=(1,2,2,3,3,3, \ldots) \& c_{n}=p_{\mathcal{A}, k}(n)$
- $f_{k}(n)=4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right)-\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}$

Theorem (in preparation)

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let $k>d$. If $\operatorname{gcd} A=1$ for every $(k-d)$-multisubset $A \subset\left\{a_{1}, \ldots, a_{k}\right\}$, then the sequence $\left(p_{\mathcal{A}, k}(n)\right)_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leqslant j \leqslant d$.

- $\mathcal{A}=(1,2,2,3,3,3, \ldots) \& c_{n}=p_{\mathcal{A}, k}(n)$
- $f_{k}(n)=4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right)-\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}$

Figure 5: Values of $f_{6}(n)$ for $n \leqslant 10^{5}$

Theorem (in preparation)

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a weakly increasing sequence of positive integers, and let $k>d$. If $\operatorname{gcd} A=1$ for every $(k-d)$-multisubset $A \subset\left\{a_{1}, \ldots, a_{k}\right\}$, then the sequence $\left(p_{\mathcal{A}, k}(n)\right)_{n=0}^{\infty}$ satisfies the order j Turán inequality for all but finitely many values of n and $1 \leqslant j \leqslant d$.

- $\mathcal{A}=(1,2,2,3,3,3, \ldots) \& c_{n}=p_{\mathcal{A}, k}(n)$
- $f_{k}(n)=4\left(c_{n}^{2}-c_{n+1} c_{n-1}\right)\left(c_{n+1}^{2}-c_{n} c_{n+2}\right)-\left(c_{n} c_{n+1}-c_{n-1} c_{n+2}\right)^{2}$

Figure 5: Values of $f_{6}(n)$ for $n \leqslant 10^{5}$

Figure 6: Values of $f_{7}(n)$ for $n \leqslant 10^{5}$

Research plan for the future

Polynomization

$$
\text { Let } \mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty} \text { and } k \in \mathbb{N}_{+} \text {be fixed, and let } \sigma_{A}(j)=\sum_{\substack{i=1 \\ a_{i} \mid j}}^{k} a_{i}
$$

Polynomization

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ and $k \in \mathbb{N}_{+}$be fixed, and let $\sigma_{A}(j)=\sum_{\substack{i=1 \\ a_{i} \mid j}}^{k} a_{i}$

$$
\sum_{n=0}^{\infty} p_{\mathcal{A}, k}(n) q^{n}=\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}}
$$

Polynomization

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ and $k \in \mathbb{N}_{+}$be fixed, and let $\sigma_{A}(j)=\sum_{\substack{i=1 \\ a_{i} \mid j}}^{k} a_{i}$

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{\mathcal{A}, k}(n) q^{n} & =\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}} \\
& =\left(\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}}\right)^{x}
\end{aligned}
$$

Polynomization

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ and $k \in \mathbb{N}_{+}$be fixed, and let $\sigma_{A}(j)=\sum_{\substack{i=1 \\ a_{i} \mid j}}^{k} a_{i}$

$$
\begin{gathered}
\sum_{n=0}^{\infty} p_{\mathcal{A}, k}(n) q^{n}=\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}} \\
\sum_{n=0}^{\infty} f_{A, n}(x) q^{n}=\left(\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}}\right)^{x}
\end{gathered}
$$

Polynomization

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ and $k \in \mathbb{N}_{+}$be fixed, and let $\sigma_{A}(j)=\sum_{\substack{i=1 \\ a_{i} \mid j}}^{k} a_{i}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p_{\mathcal{A}, k}(n) q^{n}=\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}} \\
& \sum_{n=0}^{\infty} f_{A, n}(x) q^{n}=\left(\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}}\right)^{x}
\end{aligned}
$$

Proposition

We have that $f_{A, 0}(x)=1$. Moreover, if $n \geqslant 1$, then

$$
f_{A, n}(x)=\frac{x}{n} \sum_{j=1}^{n} \sigma_{A}(j) f_{A, n-j}(x) \text { and } f_{A, n}^{\prime}(x)=\sum_{j=1}^{n} \frac{\sigma_{A}(j)}{j} f_{A, n-j}(x),
$$

Polynomization

Let $\mathcal{A}=\left(a_{i}\right)_{i=1}^{\infty}$ and $k \in \mathbb{N}_{+}$be fixed, and let $\sigma_{A}(j)=\sum_{\substack{i=1 \\ a_{i} \mid j}}^{k} a_{i}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p_{\mathcal{A}, k}(n) q^{n}=\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}} \\
& \sum_{n=0}^{\infty} f_{A, n}(x) q^{n}=\left(\prod_{i=1}^{k} \frac{1}{1-q^{a_{i}}}\right)^{x}
\end{aligned}
$$

Proposition

We have that $f_{A, 0}(x)=1$. Moreover, if $n \geqslant 1$, then

$$
f_{A, n}(x)=\frac{x}{n} \sum_{j=1}^{n} \sigma_{A}(j) f_{A, n-j}(x) \text { and } f_{A, n}^{\prime}(x)=\sum_{j=1}^{n} \frac{\sigma_{A}(j)}{j} f_{A, n-j}(x)
$$

Problem

Investigate the \log-behaviour of $f_{A, n}(x)$.

嗇 K．Gajdzica，A note on the higher order Turán inequalities for quasi－ polynomial－like functions，（in preparation）．
目 K．Gajdzica，Log－concavity of the restricted partition function $p_{\mathcal{A}}(n, k)$ and the new Bessenrodt－Ono type inequality，J．Number Theory，vol． 251 （2023），31－65．
R．Gajdzica，Restricted partition functions and the r－log－concavity of quasi－polynomial－like functions，https：／／arxiv．org／abs／2305． 00085， 2023.
围 M．Griffin，K．Ono，L．Rolen，D．Zagier，Jensen polynomials for the Riemann zeta function and other sequences，Proc．Natl．Acad．Sci． USA 116 （2019），11103－11110．
目 Q．H．Hou，Z．R．Zhang，Asymptotic r－log－convexity and P－recursive sequences，J．Symbolic Comput． 93 （2019），21－33．
國 Q．H．Hou，Z．R．Zhang，r－log－concavity of partition functions，Ra－ manujan J 48 （2019），117－129．

