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Introduction



Quasi-polynomials & Quasi-polynomial-like functions

Definition: Quasi-polynomial
Let k ∈ N and M1 ∈ N+. A quasi-polynomial f (n) of degree k is an
expression of the form

f (n) = tk(n)nk + tk−1(n)nk−1 + · · · + t0(n),

where the coefficients t0(n), . . . , tk(n) depend on the residue class of n
mod M1.

Definition: Quasi-polynomial-like function
Let d , l ∈ N, M2 ∈ N+ and d ⩽ l . We say that a function g(n) is a
quasi-polynomial-like function if g(n) might be written as

g(n) = t̃l(n)nl + t̃l−1(n)nl−1 + · · · + t̃d(n)nd + o(nd),

where the coefficients t̃d(n), . . . , t̃l(n) depend on the residue class of n
mod M2.
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The restricted partition function pA,k(n)

Definition: A restricted partition

Let k ∈ N+. Let A = (ai)∞
i=1 be a non-decreasing sequence of positive

integers. A restricted partition λ = (λ1, λ2, . . . , λj) of n ∈ N is a sequence
such that λ1, λ2, . . . , λj ∈ {a1, a2, . . . , ak} and

n = λ1 + λ2 + · · · + λj .

Moreover, two restricted partitions are considered the same if they differ
only in the order of their parts.

Definition: The restricted partition function
The restricted partition function pA,k(n) counts restricted partitions of n.
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An example of the restricted partition function

Example: Restricted Plane Partitions
Let A = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, . . .)

and k = 8. For n = 4, we have
pA,8(4) = 11:

4 = 4
4 = 4
4 = 3 + 1
4 = 3 + 1
4 = 3 + 1

4 = 2 + 2
4 = 2 + 2
4 = 2 + 2
4 = 2 + 1 + 1
4 = 2 + 1 + 1

and 4 = 1 + 1 + 1 + 1.

Remark: Connection between pA,k(n) and p(n)
If ”k = ∞“ and A = (1, 2, 3, . . .), then pA,∞(n) = p(n).
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Bell’s Theorem

Theorem (Bell 1943)
The function pA,k(n) is a quasi-polynomial — it takes the form

pA,k(n) = tk−1(n)nk−1 + tk−2(n)nk−2 + · · · + t0(n),

where each tj(n) depends on n mod lcm(a1, a2, . . . , ak) for
0 ⩽ j ⩽ k − 1.

Remark
We can say something more about these coefficients tj(n):

• Almkvist
• Beck, Gessel and Komatsu
• Israilov
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The Motivation

Definition: A log-concave sequence
A sequence (ci)∞

i=0 ∈ R∞ is log-concave if c2
n > cn−1cn+1 for n ⩾ 1.

Theorem (Nicolas 1978, DeSalvo-Pak 2015)
Sequence p(n) is log-concave for all n > 25. In other words, we have

p2(n) > p(n + 1)p(n − 1)

for every n > 25.

Remark
There are a lot of similar results for other variations of the partition func-
tion (e.g. the k-regular partition function pk(n), the k-colored partition
function p−k(n), the plane partition function pp(n), . . .).
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The Motivation

The r-log-concavity
problem

The log-concavity
problem

The higher order
Turán inequalities

The Bessenrodt-Ono
inequality

Theorem (Bessenrodt-Ono 2016)
If a, b are integers such that a, b ⩾ 2 and a + b > 9, then

p(a)p(b) > p(a + b).
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The r-log-concavity problem



The r-log-concavity

• Let (cn)∞
n=0 ∈ R∞ and r ∈ N+ be fixed.

• Define L̂i
c(n) recursively by setting

L̂c(n) = c2
n+1 − cncn+2

L̂i
c(n) = (L̂i−1

c (n + 1))2 − L̂i−1
c (n + 2)L̂i−1

c (n)

• If L̂c(n), L̂2
c(n), . . . , L̂r

c(n) > 0 for all sufficiently large values of n,
then cn is said to be asymptotically r -log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r , the sequence (p(n))n⩾0 is asymptotically
r -log-concave.

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 7 / 16



The r-log-concavity

• Let (cn)∞
n=0 ∈ R∞ and r ∈ N+ be fixed.

• Define L̂i
c(n) recursively by setting

L̂c(n) = c2
n+1 − cncn+2

L̂i
c(n) = (L̂i−1

c (n + 1))2 − L̂i−1
c (n + 2)L̂i−1

c (n)

• If L̂c(n), L̂2
c(n), . . . , L̂r

c(n) > 0 for all sufficiently large values of n,
then cn is said to be asymptotically r -log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r , the sequence (p(n))n⩾0 is asymptotically
r -log-concave.

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 7 / 16



The r-log-concavity

• Let (cn)∞
n=0 ∈ R∞ and r ∈ N+ be fixed.

• Define L̂i
c(n) recursively by setting

L̂c(n) = c2
n+1 − cncn+2

L̂i
c(n) = (L̂i−1

c (n + 1))2 − L̂i−1
c (n + 2)L̂i−1

c (n)

• If L̂c(n), L̂2
c(n), . . . , L̂r

c(n) > 0 for all sufficiently large values of n,
then cn is said to be asymptotically r -log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r , the sequence (p(n))n⩾0 is asymptotically
r -log-concave.

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 7 / 16



The r-log-concavity

• Let (cn)∞
n=0 ∈ R∞ and r ∈ N+ be fixed.

• Define L̂i
c(n) recursively by setting

L̂c(n) = c2
n+1 − cncn+2

L̂i
c(n) = (L̂i−1

c (n + 1))2 − L̂i−1
c (n + 2)L̂i−1

c (n)

• If L̂c(n), L̂2
c(n), . . . , L̂r

c(n) > 0 for all sufficiently large values of n,
then cn is said to be asymptotically r -log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r , the sequence (p(n))n⩾0 is asymptotically
r -log-concave.

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 7 / 16



The r-log-concavity

• Let (cn)∞
n=0 ∈ R∞ and r ∈ N+ be fixed.

• Define L̂i
c(n) recursively by setting

L̂c(n) = c2
n+1 − cncn+2

L̂i
c(n) = (L̂i−1

c (n + 1))2 − L̂i−1
c (n + 2)L̂i−1

c (n)

• If L̂c(n), L̂2
c(n), . . . , L̂r

c(n) > 0 for all sufficiently large values of n,
then cn is said to be asymptotically r -log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r , the sequence (p(n))n⩾0 is asymptotically
r -log-concave.

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 7 / 16



The r-log-concavity

• Let (cn)∞
n=0 ∈ R∞ and r ∈ N+ be fixed.

• Define L̂i
c(n) recursively by setting

L̂c(n) = c2
n+1 − cncn+2

L̂i
c(n) = (L̂i−1

c (n + 1))2 − L̂i−1
c (n + 2)L̂i−1

c (n)

• If L̂c(n), L̂2
c(n), . . . , L̂r

c(n) > 0 for all sufficiently large values of n,
then cn is said to be asymptotically r -log-concave.

Theorem (Hou-Zhang 2018)
For every positive integer r , the sequence (p(n))n⩾0 is asymptotically
r -log-concave.

Krystian Gajdzica Log-behaviour of quasi-polynomial-like functions 7 / 16



• Let (ωn)n⩾0 be a sequence of real numbers

• Suppose that there exist real numbers ci and αj with
α0 < α1 < · · · < αm such that

lim
n→∞

nαm

(
ωn −

m∑
i=0

ci
nαi

)
= 0

• We call g =
m∑

n=0

ci
nαi

the Puiseux-type approximation of ωn

Theorem (Hou-Zhang 2018)
Let (bn)n⩾0 be a positive sequence such that the Puiseux-type
approximation of bn+2bn/b2

n+1 takes the form

bn+2bn

b2
n+1

= 1 + c1
nα1

+ · · · + cm
nαm

+ o
(

1
nαm

)
.

If c1 < 0 and α1 < 2, then (bn)n⩾0 is asymptotically
⌊αm/α1⌋-log-concave.
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Theorem (G. 202?)
Let l , r ∈ N+ be such that l ⩾ 2r . Suppose further that we have

f (n) = al(n)nl + al−1(n)nl−1 + · · · + al−2r (n)nl−2r + o
(
nl−2r) ,

where the coefficients al−2r (n), . . . , al(n) might depend on the residue class
of n (mod M) for some positive integer M ⩾ 2. Then the sequence
(f (n))∞

n=0 is asymptotically r -log-concave if and only if all the numbers
al−2r (n), . . . , al(n) are independent of the residue class of n (mod M).

Theorem (G. 202?)
Let A = (ai)∞

i=1, r ∈ N+ and k > 2r be fixed. Then the sequence
(pA,k(n))∞

n=0 is asymptotically r -log-concave if and only if we have that
gcd A = 1 for all (k − 2r)-multisubsets A of {a1, a2, . . . , ak}.
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Let A = (ai)∞

i=1, r ∈ N+ and k > 2r be fixed. Then the sequence
(pA,k(n))∞

n=0 is asymptotically r -log-concave if and only if we have that
gcd A = 1 for all (k − 2r)-multisubsets A of {a1, a2, . . . , ak}.
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A = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, . . .)

Figure 1: Values of L̂2
pA,10

(n) for n ⩽ 105

Figure 2: Values of L̂2
pA,11

(n) for n ⩽ 105

Figure 3: Values of L̂3
pA,12

(n) for n ⩽ 106 Figure 4: Values of L̂3
pA,13

(n) for n ⩽ 106
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The higher order Turán
inequalities



The higher order Turán ineqaulities

• A sequence (ci)∞
i=0 satisfies the (second order) Turán inequality if

c2
n ⩾ cn+1cn−1 for every n ⩾ 1.

• It fulfills the third order Turán inequality if for all n ⩾ 1, we have

4(c2
n − cn+1cn−1)(c2

n+1 − cncn+2) ⩾ (cncn+1 − cn−1cn+2)2

• If Jd,n
c (X ) are the Jensen polynomials of degree d and shift n

associated to the sequence c := (ci)∞
i=0:

Jd,n
c (X ) :=

d∑
i=0

(
d
i

)
cn+iX i ,

then (ci)∞
i=0 satisfies the order d Turán inequality at n if and only if

Jd,n−1
c (X ) is hyperbolic

— all of its roots are real numbers.
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Theorem (Griffin-Ono-Rolen-Zagier 2019)
Suppose that α(n), (E (n)) and (δ(n)) are positive real sequences with
limn→∞ δ(n) = 0, and that F (t) =

∑∞
i=0 ci t i is a formal power series

with complex coefficients. For a fixed d ⩾ 1, suppose that there are real
numbers (C0(n)), . . . , (Cd(n)), with limn→∞ Ci(n) = ci for 0 ⩽ i ⩽ d,
such that for 0 ⩽ j ⩽ d, we have

α(n + j)
α(n) E (n)−j =

d∑
i=0

Ci(n)δ(n)i j i + o(δ(n)d) as n → ∞.

Then, we have

lim
n→∞

(
δ(n)−d

α(n) Jd,n
α

(
δ(n)X − 1

E (n)

))
= d!

d∑
k=0

(−1)d−kcd−kX k/k!,

uniformly for X in any compact subset of R.
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Theorem (in preparation)
Let k, s ∈ N. Suppose further that g(n) is a quasi-polynomial-like function
of the form

g(n) = tk(n)nk + tk−1(n)nk−1 + · · · + ts(n)ns + o(ns),

where the coefficients ts(n), . . . , tk(n) might depend on the residue class of
n mod M for some M ⩾ 2. If tk(n), tk−1(n), . . . , tk−d(n) are independent
of the residue class of n mod M, then g(n) satisfies the order j Turán
inequality for all sufficiently large values of n and 1 ⩽ j ⩽ d.
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Theorem (in preparation)
Let A = (ai)∞

i=1 be a weakly increasing sequence of positive integers, and
let k > d. If gcd A = 1 for every (k − d)-multisubset A ⊂ {a1, . . . , ak},
then the sequence (pA,k(n))∞

n=0 satisfies the order j Turán inequality for
all but finitely many values of n and 1 ⩽ j ⩽ d.

• A = (1, 2, 2, 3, 3, 3, . . .) & cn = pA,k(n)

• fk(n) = 4(c2
n − cn+1cn−1)(c2

n+1 − cncn+2) − (cncn+1 − cn−1cn+2)2

Figure 5: Values of f6(n) for n ⩽ 105 Figure 6: Values of f7(n) for n ⩽ 105
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Research plan for the future



Polynomization

Let A = (ai)∞
i=1 and k ∈ N+ be fixed, and let σA(j) =

∑k
i=1
ai |j

ai

∞∑
n=0

pA,k(n)qn =
k∏

i=1

1
1 − qai

∞∑
n=0

fA,n(x)qn

=

(
k∏

i=1

1
1 − qai

)x

Proposition
We have that fA,0(x) = 1. Moreover, if n ⩾ 1, then

fA,n(x) = x
n

n∑
j=1

σA(j)fA,n−j(x) and f ′
A,n(x) =

n∑
j=1

σA(j)
j fA,n−j(x),

Problem
Investigate the log-behaviour of fA,n(x).
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