## Journées Arithmétiques 2023

# On differences of perfect and prime powers 

Pedro-José Cazorla García

University of Manchester
4th July 2023

## Catalan's conjecture

## Conjecture (Catalan, 1844)

The only solution to the Diophantine equation

$$
y^{n}-z^{m}=1
$$

$(y, z>0$ and $n, m>1)$ is given by

$$
(y, z, n, m)=(3,2,2,3)
$$

## Catalan's conjecture

## Conjecture (Catalan, 1844)

The only solution to the Diophantine equation

$$
y^{n}-z^{m}=1
$$

$(y, z>0$ and $n, m>1)$ is given by

$$
(y, z, n, m)=(3,2,2,3)
$$

Open for many years, and finally proved by Mihăilescu in 2002

## A natural generalisation

## Question:

Can we solve

$$
y^{n}-z^{m}=D
$$

for an arbitrary $D>0$ ?

## A natural generalisation

## Question:

Can we solve

$$
y^{n}-z^{m}=D
$$

for an arbitrary $D>0$ ?

## Answer:

We do not even know if it has finitely many solutions!

## What we can solve

## Question:

Can we solve

$$
y^{n}-q^{\alpha}=C_{1} x^{2}
$$

where $q$ is a fixed prime number and $C_{1}$ is a fixed positive squarefree integer?

## What we can solve

## Question:

Can we solve

$$
y^{n}-q^{\alpha}=C_{1} x^{2}
$$

where $q$ is a fixed prime number and $C_{1}$ is a fixed positive squarefree integer?

## Answer:

Yes!

## What we can solve

## Question:

Can we solve

$$
y^{n}-q^{\alpha}=C_{1} x^{2}
$$

where $q$ is a fixed prime number and $C_{1}$ is a fixed positive squarefree integer?

## Answer:

Yes! The equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

is a particular case of the generalised Lebesgue-Nagell equation, which has been studied extensively (most recently by Bennett-Siksek in 2022).

## Strategy

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

## Strategy

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

For the rest of the talk, we assume that $y$ is even.

## Strategy

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

For the rest of the talk, we assume that $y$ is even.
(1) Bound $n$, so that $n<N_{0}\left(C_{1}, q\right)$.
(2) Solve for each outstanding value of $n$.

## Strategy: bound $n$

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

(1) Bound $n$, so that $n<N_{0}\left(C_{1}, q\right)$. Two techniques:

## Strategy: bound $n$

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

(1) Bound $n$, so that $n<N_{0}\left(C_{1}, q\right)$. Two techniques:

- Linear forms in logarithms (q-adic and complex): They always work, but the bound is quite bad.


## Strategy: bound $n$

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

(1) Bound $n$, so that $n<N_{0}\left(C_{1}, q\right)$. Two techniques:

- Linear forms in logarithms (q-adic and complex): They always work, but the bound is quite bad.
- Modular method: does not always work but bound is sharp.


## Strategy: solve for fixed $n$

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

(2) Solve for each outstanding value of $n$.

## Strategy: solve for fixed $n$

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

(2) Solve for each outstanding value of $n$.

- Thue-Mahler equations (Gherga-Siksek, 2022): useful in theory, impractical for large ( $n>11$ ) exponents.


## Strategy: solve for fixed $n$

## Our equation

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

(2) Solve for each outstanding value of $n$.

- Thue-Mahler equations (Gherga-Siksek, 2022): useful in theory, impractical for large ( $n>11$ ) exponents.
- Modular method: can be applied for all exponents $n>5$, but fails if there are solutions.


## The modular method in a nutshell

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

## The modular method in a nutshell

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

Following Bennett and Skinner (2004), We define $F$ via:

$$
F: Y^{2}+X Y=X^{3}+\frac{C_{1} x-1}{4} X^{2}+\frac{C_{1} y^{n}}{64} X
$$

This is an elliptic curve, which we shall call the Frey curve.

## Modular method continued

$$
F: Y^{2}+X Y=X^{3}+\frac{C_{1} x-1}{4} X^{2}+\frac{C_{1} y^{n}}{64} X
$$

This is an elliptic curve, which we shall call the Frey curve.

## Modular method continued

$$
F: Y^{2}+X Y=X^{3}+\frac{C_{1} X-1}{4} X^{2}+\frac{C_{1} y^{n}}{64} X
$$

This is an elliptic curve, which we shall call the Frey curve.
By the modularity theorem (Wiles, Conrad, Diamond, Taylor, Breuil, 2001) and Ribet's Level Lowering Theorem (1986), it follows that

$$
\bar{\rho}_{n}(F) \cong \bar{\rho}_{n}(f)
$$

for some $f \in S_{2}^{\text {new }}\left(\Gamma_{0}(N)\right)$.

## Modular method continued

$$
F: Y^{2}+X Y=X^{3}+\frac{C_{1} x-1}{4} X^{2}+\frac{C_{1} y^{n}}{64} X
$$

This is an elliptic curve, which we shall call the Frey curve.
By the modularity theorem (Wiles, Conrad, Diamond, Taylor, Breuil, 2001) and Ribet's Level Lowering Theorem (1986), it follows that

$$
\bar{\rho}_{n}(F) \cong \bar{\rho}_{n}(f)
$$

for some $f \in S_{2}^{\text {new }}\left(\Gamma_{0}(N)\right)$.
Aim: Show that, for all $f$, there exists some $\ell$ such that

$$
\bar{\rho}_{n}(F)\left(\operatorname{Frob}_{\ell}\right) \neq \bar{\rho}_{n}(f)\left(\text { Frob }_{\ell}\right)
$$

## A key lemma

## Lemma

Let $\ell=2 k n+1$ be prime ( + some other conditions). Then, $\bar{\rho}_{n}(F)\left(\right.$ Frob $\left._{\ell}\right)$ depends only on:

- The residue class of $q(\bmod \ell)$.
- The residue class of $\alpha(\bmod 2 n)$, which we shall denote by $\beta$.
- Some $\omega \in\{0,1, \ldots, \ell-1\}$ satisfying:

$$
\left(C_{1} \omega^{2}+q^{\beta}\right)^{2 k} \equiv 1 \quad(\bmod \ell)
$$

## A key lemma

## Lemma

Let $\ell=2 k n+1$ be prime ( + some other conditions). Then, $\bar{\rho}_{n}(F)\left(\right.$ Frob $\left._{\ell}\right)$ depends only on:

- The residue class of $q(\bmod \ell)$.
- The residue class of $\alpha(\bmod 2 n)$, which we shall denote by $\beta$.
- Some $\omega \in\{0,1, \ldots, \ell-1\}$ satisfying:

$$
\left(C_{1} \omega^{2}+q^{\beta}\right)^{2 k} \equiv 1 \quad(\bmod \ell)
$$

Computing all the possibilities for $\bar{\rho}_{n}(F)\left(\right.$ Frob $\left._{\ell}\right)$ is now a finite computation, so we can find an $\ell$ proving that

$$
\bar{\rho}_{n}(F)\left(\text { Frob }_{\ell}\right) \neq \bar{\rho}_{n}(f)\left(\text { Frob }_{\ell}\right) .
$$

## Conclusions

With all the described methodology, we are able to prove that

## Theorem (C-G, 2023+)

We can find all solutions to

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

where $1 \leq C_{1} \leq 20$ is squarefree and $2 \leq q<25$ is prime.

## Conclusions

With all the described methodology, we are able to prove that

## Theorem (C-G, 2023+)

We can find all solutions to

$$
C_{1} x^{2}+q^{\alpha}=y^{n}
$$

where $1 \leq C_{1} \leq 20$ is squarefree and $2 \leq q<25$ is prime.
This is "maximal" because:

$$
\begin{aligned}
& 21 \cdot 79^{2}+11^{1}=2^{17} \\
& 3 \cdot 209^{2}+29^{1}=2^{17} .
\end{aligned}
$$

## Icebreaker

Did you know that 8 and 9 are the only consecutive perfect powers?

## Any questions?

