Journées Arithmétiques, 4 July 2023

ZERO-DENSITY ESTIMATES FOR BEURLING GENERALIZED NUMBERS

Frederik Broucke — fabrouck.broucke@ugent.be

Beurling generalized primes

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

Beurling generalized primes

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\nu_{1}} \cdots p_{j}^{\nu_{j}} .
\end{array}
$$

Beurling generalized primes

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\nu_{1}} \cdots p_{j}^{\nu_{j}}
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{p_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{n_{k} \leq x\right\} .
$$

Beurling generalized primes

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\nu_{1}} \cdots p_{j}^{\nu_{j}}
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{p_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{n_{k} \leq x\right\} .
$$

Chebyshev function:

$$
\psi_{\mathcal{P}}(x)=\sum_{p_{j}^{\nu} \leq x} \log p_{j}
$$

EXAMPLES

$■(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

EXAMPLES

$■(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

- \mathcal{O}_{K} the ring of integers of a number field K.

$$
\begin{gathered}
\mathcal{P}=\left(|P|, P \unlhd \mathcal{O}_{K}, P \text { prime ideal }\right), \\
\mathcal{N}=\left(|I|, I \unlhd \mathcal{O}_{K}, l \text { integral ideal }\right) . \\
\pi_{\mathcal{O}_{K}}(x) \sim \frac{x}{\log x}, \quad N_{\mathcal{O}_{K}}(x)=\rho_{K} x+O\left(x^{1-\frac{2}{d+1}}\right) .
\end{gathered}
$$

The Landau-DlVP PNT

We assume

$$
\begin{equation*}
N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right), \quad \text { some } A>0 \text { and } \theta \in[0,1) . \tag{1}
\end{equation*}
$$

The Landau-DlVP PNT

We assume

$$
\begin{equation*}
N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right), \quad \text { some } A>0 \text { and } \theta \in[0,1) . \tag{1}
\end{equation*}
$$

Theorem (Landau prime ideal theorem)

Under the above assumption, there is a constant $c=c(\theta)>0$ such that

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x})) .
$$

The Landau-dlVP PNT

We assume

$$
\begin{equation*}
N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right), \quad \text { some } A>0 \text { and } \theta \in[0,1) . \tag{1}
\end{equation*}
$$

Theorem (Landau prime ideal theorem)

Under the above assumption, there is a constant $c=c(\theta)>0$ such that

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x})) .
$$

Theorem (Diamond, Montgomery, Vorhauer, 2006)
For $\theta \in(1 / 2,1)$, there exist systems $(\mathcal{P}, \mathcal{N})$ with $N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right)$ and

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+\Omega\left(x \exp \left(-c^{\prime} \sqrt{\log x}\right)\right)
$$

Beurling ζ

Beurling zeta function associated with $(\mathcal{P}, \mathcal{N})$:

$$
\zeta_{\mathcal{P}}(s)=\sum_{n_{j}} \frac{1}{n_{j}^{s}} .
$$

Beurling ζ

Beurling zeta function associated with $(\mathcal{P}, \mathcal{N})$:

$$
\zeta_{\mathcal{P}}(s)=\sum_{n_{j}} \frac{1}{n_{j}^{s}} .
$$

Under (1), $\zeta_{\mathcal{P}}(s)-\frac{A}{s-1}$ has analytic continuation to $\operatorname{Re} s>\theta$,

Beurling ζ

Beurling zeta function associated with $(\mathcal{P}, \mathcal{N})$:

$$
\zeta_{\mathcal{P}}(s)=\sum_{n_{j}} \frac{1}{n_{j}^{s}} .
$$

Under (1), $\zeta_{\mathcal{P}}(s)-\frac{A}{s-1}$ has analytic continuation to $\operatorname{Re} s>\theta$, and no zeros in the region

$$
\sigma \geq 1-\frac{d}{\log (|t|+2)}
$$

Beurling ζ

Beurling zeta function associated with $(\mathcal{P}, \mathcal{N})$:

$$
\zeta_{\mathcal{P}}(s)=\sum_{n_{j}} \frac{1}{n_{j}^{s}} .
$$

Under (1), $\zeta_{\mathcal{P}}(s)-\frac{A}{s-1}$ has analytic continuation to $\operatorname{Re} s>\theta$, and no zeros in the region

$$
\sigma \geq 1-\frac{d}{\log (|t|+2)}
$$

How many zeros can $\zeta_{\mathcal{P}}(s)$ have?

Number of zeros of $\zeta_{\mathcal{P}}(s)$

Lemma (Révész, '21)

Suppose (1) holds. For each $T>2, \alpha>\theta$, the number of zeros $\rho=\beta+\mathrm{i} \gamma$ of $\zeta_{\mathcal{P}}(s)$ satisfying $\beta \in[\alpha, 1],|\gamma| \in[T, T+1]$, is $O_{\alpha}(\log T)$.

Number of zeros of $\zeta_{\mathcal{P}}(s)$

Lemma (Révész, '21)

Suppose (1) holds. For each $T>2, \alpha>\theta$, the number of zeros $\rho=\beta+\mathrm{i} \gamma$ of $\zeta_{\mathcal{P}}(s)$ satisfying $\beta \in[\alpha, 1],|\gamma| \in[T, T+1]$, is $O_{\alpha}(\log T)$.

For $\alpha \in(\theta, 1], T>2$ denote

$$
N(\alpha, T):=\#\left\{\rho=\beta+\mathrm{i} \gamma: \zeta_{\mathcal{P}}(\rho)=0, \beta \geq \alpha,|\gamma| \leq T\right\} .
$$

Number of zeros of $\zeta_{\mathcal{P}}(s)$

Lemma (Révész, '21)

Suppose (1) holds. For each $T>2, \alpha>\theta$, the number of zeros $\rho=\beta+\mathrm{i} \gamma$ of $\zeta_{\mathcal{P}}(s)$ satisfying $\beta \in[\alpha, 1],|\gamma| \in[T, T+1]$, is $O_{\alpha}(\log T)$.

For $\alpha \in(\theta, 1], T>2$ denote

$$
N(\alpha, T):=\#\left\{\rho=\beta+\mathrm{i} \gamma: \zeta_{\mathcal{P}}(\rho)=0, \beta \geq \alpha,|\gamma| \leq T\right\} .
$$

Theorem (Révész, '22)

Suppose (1) holds. Suppose additionally that $n_{k} \in \mathbb{N}$ for every $n_{k} \in \mathcal{N}$. Then for every $\varepsilon>0$,

$$
N(\alpha, T) \ll T^{(6-2 \theta) \frac{1-\alpha}{1-\theta}+\varepsilon} .
$$

Zero-density estimate

Express α as convex combination of 1 and $\theta: \alpha=(1-\mu) \theta+\mu$. We also set

$$
c(\mu):=\frac{4 \mu}{2 \mu^{2}-3 \mu+2} .
$$

Zero-density estimate

Express α as convex combination of 1 and $\theta: \alpha=(1-\mu) \theta+\mu$. We also set

$$
c(\mu):=\frac{4 \mu}{2 \mu^{2}-3 \mu+2} .
$$

Theorem (B., Debruyne, '23)

Suppose (1) holds. Then for every $\varepsilon>0$ and $\delta>0$ there exists a $T_{0}=T_{0}(\varepsilon, \delta)$ such that, uniformly for $T \geq T_{0}, \mu \geq 2 / 3+\delta$,

$$
N(\alpha, T)=N((1-\mu) \theta+\mu, T) \ll T^{(c(\mu)+\varepsilon)(1-\mu)}(\log T)^{9} .
$$

PNT IN SHORT INTERVALS

PNT in short intervals holds if there is a $\lambda<1$ such that

$$
\psi_{\mathcal{P}}(x+h)-\psi_{\mathcal{P}}(x) \sim h, \quad \text { for } h \gg x^{\lambda}, \quad x \rightarrow \infty .
$$

PNT IN SHORT INTERVALS

PNT in short intervals holds if there is a $\lambda<1$ such that

$$
\psi_{\mathcal{P}}(x+h)-\psi_{\mathcal{P}}(x) \sim h, \quad \text { for } h \gg x^{\lambda}, \quad x \rightarrow \infty .
$$

For classical primes, based on Ingham-Huxley zero density estimate:

$$
\psi_{\mathbb{P}}(x+h)-\psi_{\mathbb{P}}(x) \sim h, \quad \text { for } h \gg x^{\lambda}, \quad x \rightarrow \infty
$$

whenever $\lambda>7 / 12$.

PNT IN SHORT INTERVALS

PNT in short intervals holds if there is a $\lambda<1$ such that

$$
\psi_{\mathcal{P}}(x+h)-\psi_{\mathcal{P}}(x) \sim h, \quad \text { for } h \gg x^{\lambda}, \quad x \rightarrow \infty .
$$

For classical primes, based on Ingham-Huxley zero density estimate:

$$
\psi_{\mathbb{P}}(x+h)-\psi_{\mathbb{P}}(x) \sim h, \quad \text { for } h \gg x^{\lambda}, \quad x \rightarrow \infty
$$

whenever $\lambda>7 / 12$.
Can we obtain PNT in short intervals for any system (\mathcal{P}, \mathcal{N}) satisfying (1)?

PNT IN SHORT INTERVALS

Theorem (B., Debruyne, '23)

Suppose (1) holds. If for some $d>0 \zeta_{\mathcal{P}}(s)$ has no zeros for

$$
\sigma>1-d \frac{\log _{2}|t|}{\log |t|}, \quad t>t_{0}
$$

and if for some $c>0, L>0, b \in(\theta, 1)$ we have

$$
N(\alpha, T) \ll T^{c(1-\alpha)}(\log T)^{L}, \quad \text { for } b \leq \alpha \leq 1,
$$

then $\psi_{\mathcal{P}}(x+h)-\psi_{\mathcal{P}}(x) \sim h$ for $h \gg x^{\lambda}$ whenever

$$
\lambda>\max \left\{b, 1-\frac{d}{c d+L}\right\} .
$$

COUNTEREXAMPLE

Proposition (B., Debruyne, '23)

For every $\theta \in(1 / 2,1)$, there exists a system satisfying (1) such that for every $\lambda \in(0,1)$, there exist sequences $\left(x_{K}\right)_{K},\left(h_{K}\right)_{K}, h_{K} \asymp x_{K}^{\lambda}$ such that

$$
\begin{aligned}
& \limsup _{K \rightarrow \infty} \frac{\psi_{\mathcal{P}}\left(x_{K}+h_{K}\right)-\psi_{\mathcal{P}}\left(x_{K}\right)}{h_{K}}>1, \\
& \liminf _{K \rightarrow \infty} \frac{\psi_{\mathcal{P}}\left(x_{K}+h_{K}\right)-\psi_{\mathcal{P}}\left(x_{K}\right)}{h_{K}}<1 .
\end{aligned}
$$

CHEBYSHEV BOUNDS IN SHORT INTERVALS

Suppose (1) holds. If for some $d>0 \zeta_{\mathcal{P}}(s)$ has no zeros for

$$
\sigma>1-\frac{d}{\log |t|}, \quad t>t_{0}
$$

and if for some $c>0, K>0, b \in(\theta, 1)$ we have

$$
N(\alpha, T) \leq K T^{c(1-\alpha)}, \quad \text { for } b \leq \alpha \leq 1,
$$

then $\psi_{\mathcal{P}}(x+h)-\psi_{\mathcal{P}}(x) \asymp h$ for $h \gg x^{\lambda}$ whenever $\lambda>\lambda_{0}(d, c, K, b)$.

CHEBYSHEV BOUNDS IN SHORT INTERVALS

Suppose (1) holds. If for some $d>0 \zeta_{\mathcal{P}}(s)$ has no zeros for

$$
\sigma>1-\frac{d}{\log |t|}, \quad t>t_{0}
$$

and if for some $c>0, K>0, b \in(\theta, 1)$ we have

$$
N(\alpha, T) \leq K T^{c(1-\alpha)}, \quad \text { for } b \leq \alpha \leq 1,
$$

then $\psi_{\mathcal{P}}(x+h)-\psi_{\mathcal{P}}(x) \asymp h$ for $h \gg x^{\lambda}$ whenever $\lambda>\lambda_{0}(d, c, K, b)$. Questions:
Does a log-free zero-density estimate always holds under (1)?
Do Chebyshev bounds in short intervals always hold under (1)?

References

- H. G. Diamond, W.-B. Zhang, Beurling generalized numbers, Mathematical Surveys and Monographs series, AMS, Providence, RI, 2016.

■ Sz. Gy. Révész, Density theorems for the Beurling zeta function, Mathematika 68 (2022), 1045-1072.
■ F. Broucke, G. Debruyne, On zero-density estimates and the PNT in short intervals for Beurling generalized numbers, Acta Arith. 207 (2023), 365-391.

QUESTIONS?

