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BEURLING GENERALIZED PRIMES

Beurling’s question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

P = (pj)j≥1, 1 < p1 ≤ p2 ≤ ... , pj → ∞;

N = (nk)k≥0, 1 = n0 < n1 ≤ n2 ≤ ... , nk = pν1
1 · · · p

νj
j .

Counting functions:

πP(x) = #{pj ≤ x}, NP(x) = #{nk ≤ x}.

Chebyshev function:
ψP(x) =

∑
pνj ≤x

log pj .

2 / 13



BEURLING GENERALIZED PRIMES

Beurling’s question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

P = (pj)j≥1, 1 < p1 ≤ p2 ≤ ... , pj → ∞;

N = (nk)k≥0, 1 = n0 < n1 ≤ n2 ≤ ... , nk = pν1
1 · · · p

νj
j .

Counting functions:

πP(x) = #{pj ≤ x}, NP(x) = #{nk ≤ x}.

Chebyshev function:
ψP(x) =

∑
pνj ≤x

log pj .

2 / 13



BEURLING GENERALIZED PRIMES

Beurling’s question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

P = (pj)j≥1, 1 < p1 ≤ p2 ≤ ... , pj → ∞;

N = (nk)k≥0, 1 = n0 < n1 ≤ n2 ≤ ... , nk = pν1
1 · · · p

νj
j .

Counting functions:

πP(x) = #{pj ≤ x}, NP(x) = #{nk ≤ x}.

Chebyshev function:
ψP(x) =

∑
pνj ≤x

log pj .

2 / 13



BEURLING GENERALIZED PRIMES

Beurling’s question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

P = (pj)j≥1, 1 < p1 ≤ p2 ≤ ... , pj → ∞;

N = (nk)k≥0, 1 = n0 < n1 ≤ n2 ≤ ... , nk = pν1
1 · · · p

νj
j .

Counting functions:

πP(x) = #{pj ≤ x}, NP(x) = #{nk ≤ x}.

Chebyshev function:
ψP(x) =

∑
pνj ≤x

log pj .

2 / 13



EXAMPLES

(P ,N ) = (P,N>0), the classical primes and integers.

πP(x) = π(x), NP(x) = ⌊x⌋.

OK the ring of integers of a number field K .

P = (|P| , P ⊴ OK , P prime ideal),

N = (|I| , I ⊴ OK , I integral ideal).

πOK (x) ∼
x

log x
, NOK (x) = ρK x + O

(
x1− 2

d+1
)
.
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THE LANDAU-DLVP PNT
We assume

NP(x) = Ax + O(xθ), some A > 0 and θ ∈ [0, 1). (1)

Theorem (Landau prime ideal theorem)

Under the above assumption, there is a constant c = c(θ) > 0 such that

πP(x) = Li(x) + O
(
x exp(−c

√
log x)

)
.

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For θ ∈ (1/2, 1), there exist systems (P ,N ) with
NP(x) = Ax + O(xθ) and

πP(x) = Li(x) + Ω
(
x exp(−c′

√
log x)

)
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BEURLING ζ

Beurling zeta function associated with (P ,N ):

ζP(s) =
∑

nj

1

ns
j

.

Under (1), ζP(s)− A
s−1 has analytic continuation to Re s > θ, and no

zeros in the region

σ ≥ 1 − d

log(|t|+ 2)
.

How many zeros can ζP(s) have?
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NUMBER OF ZEROS OF ζP(s)

Lemma (Révész, ’21)

Suppose (1) holds. For each T > 2, α > θ, the number of zeros
ρ = β + iγ of ζP(s) satisfying β ∈ [α, 1], |γ| ∈ [T , T + 1], is
Oα(log T ).

For α ∈ (θ, 1], T > 2 denote

N(α, T ) := #{ρ = β + iγ : ζP(ρ) = 0,β ≥ α, |γ| ≤ T}.

Theorem (Révész, ’22)

Suppose (1) holds. Suppose additionally that nk ∈ N for every nk ∈ N .
Then for every ε > 0,

N(α, T ) ≪ T (6−2θ) 1−α
1−θ

+ε.
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ZERO-DENSITY ESTIMATE

Express α as convex combination of 1 and θ: α = (1 − µ)θ + µ.
We also set

c(µ) :=
4µ

2µ2 − 3µ+ 2
.

Theorem (B., Debruyne, ’23)

Suppose (1) holds. Then for every ε > 0 and δ > 0 there exists a
T0 = T0(ε, δ) such that, uniformly for T ≥ T0, µ ≥ 2/3 + δ,

N(α, T ) = N((1 − µ)θ + µ, T ) ≪ T (c(µ)+ε)(1−µ)(log T )9.
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PNT IN SHORT INTERVALS

PNT in short intervals holds if there is a λ < 1 such that

ψP(x + h)− ψP(x) ∼ h, for h ≫ xλ, x → ∞.

For classical primes, based on Ingham–Huxley zero density estimate:

ψP(x + h)− ψP(x) ∼ h, for h ≫ xλ, x → ∞

whenever λ > 7/12.
Can we obtain PNT in short intervals for any system (P ,N ) satisfying (1)?
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PNT IN SHORT INTERVALS

Theorem (B., Debruyne, ’23)

Suppose (1) holds. If for some d > 0 ζP(s) has no zeros for

σ > 1 − d
log2 |t|
log |t|

, t > t0,

and if for some c > 0, L > 0, b ∈ (θ, 1) we have

N(α, T ) ≪ T c(1−α)(log T )L, for b ≤ α ≤ 1,

then ψP(x + h)− ψP(x) ∼ h for h ≫ xλ whenever

λ > max

{
b, 1 − d

cd + L

}
.
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COUNTEREXAMPLE

Proposition (B., Debruyne, ’23)

For every θ ∈ (1/2, 1), there exists a system satisfying (1) such that for
every λ ∈ (0, 1), there exist sequences (xK )K , (hK )K , hK ≍ xλK such
that

lim sup
K→∞

ψP(xK + hK )− ψP(xK )

hK
> 1,

lim inf
K→∞

ψP(xK + hK )− ψP(xK )

hK
< 1.
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CHEBYSHEV BOUNDS IN SHORT INTERVALS

Suppose (1) holds. If for some d > 0 ζP(s) has no zeros for

σ > 1 − d

log |t|
, t > t0,

and if for some c > 0, K > 0, b ∈ (θ, 1) we have

N(α, T ) ≤ KT c(1−α), for b ≤ α ≤ 1,

then ψP(x + h)− ψP(x) ≍ h for h ≫ xλ whenever λ > λ0(d , c, K , b).

Questions:
Does a log-free zero-density estimate always holds under (1)?
Do Chebyshev bounds in short intervals always hold under (1)?
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