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Introduction

Leonhard Euler developed the theory of partitions,
commonly known as additive analytic number
theory in the 1740s, marking the beginning of the
field of q-analysis.

Further, it was studied by Carl Friedrich Gauss
in early 1800s. The q-binomial coefficients and
their identities, which serve as the foundation for
q-analysis, were created by him.
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Contd. . .

In 1846, Heine introduced the q-hypergeometric
function with notation 2ϕ1(a, b; c|q, z). The
systematic development of the theory of q-series
began with a paper by Heinrich Eduard Heine in
1847.

In 1869, Carl Johannes Thomae (1840-1921)
together with Jackson introduced q-integral. He
also proved that the Heine transformation for

2ϕ1(a, b; c|q, z) was a q-analogue of the Euler beta
integral, which can be expressed as a quotient of q-
Gamma functions.
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Contd. . .

Frank Hilton Jackson [1870-1960]

The real q-derivative was invented by Jackson in 1908. Further in 1910, he defined
the general q-integral which occured in his most important papers on q-series which
are “On q-definite integrals” (1910) [9], “On basic double hypergeometric functions”
(1942) and “Basic double hypergeometric functions” (1944). He was the first person
to work explicitly with the expression Γq(x)Γq(1− x).

Srinivasa Ramanujan was the first one to state the
bilateral summation formula - an extension of q-
binomial theorem.
Ramanujan’s 1ψ1 Summation:

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(az; q)∞(q/(az); q)∞(q; q)∞(b/a; q)∞
(z; q)∞(b/(az); q)∞(b; q)∞(q/a; q)∞

Sonam Garg (IIT Ropar) 32nd Journées Arithmétiques July 6, 2023 5 / 21



Contd. . .

Frank Hilton Jackson [1870-1960]

The real q-derivative was invented by Jackson in 1908. Further in 1910, he defined
the general q-integral which occured in his most important papers on q-series which
are “On q-definite integrals” (1910) [9], “On basic double hypergeometric functions”
(1942) and “Basic double hypergeometric functions” (1944). He was the first person
to work explicitly with the expression Γq(x)Γq(1− x).

Srinivasa Ramanujan was the first one to state the
bilateral summation formula - an extension of q-
binomial theorem.
Ramanujan’s 1ψ1 Summation:

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(az; q)∞(q/(az); q)∞(q; q)∞(b/a; q)∞
(z; q)∞(b/(az); q)∞(b; q)∞(q/a; q)∞

Sonam Garg (IIT Ropar) 32nd Journées Arithmétiques July 6, 2023 5 / 21



Contd. . .

Richard Askey (1933-2019) discussed the various
connections of the q-binomial theorem and the
Ramanujan’s 1ψ1 Summation theorem with q-
analogues of the gamma and beta functions. In
1978, he proved the q-analogue of the Bohr-Mollerup
theorem.

In 2003, Kurokawa and Wakayama studied the q-analogue of the Riemann zeta
function and introduced a q-analogue of the Euler constant γ0(q). Further, they
proved the irrationality of numbers involving γ0(q). In 2007, they gave a Jackson
q-integral analogue of Euler’s logarithmic sine integral.
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Notations & Terminologies

q-analogue of a (a ∈ C)

[a]q = qa−1
q−1

, q ̸= 1.

q-factorial

[n]q! = [1]q · [2]q · · · [n− 1]q · [n]q

= q−1
q−1

· q2−1
q−1

· · · qn−1
q−1

= 1 · (1 + q) · · · (1 + q + q2 + · · ·+ q(n−1)).

q-shifted factorial of a

(a; q)0 = 1, (a; q)n =

n−1∏
m=0

(1− aqm), n ≥ 1,

(a; q)∞ = lim
n→∞

(a; q)n =

∞∏
n=0

(1− aqn).
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Contd. . .

q-analogue of the gamma function by Jackson [9]

Γq(x) =
(q;q)∞(1−q)1−x

(qx;q)∞
for 0 < q < 1

Γq(x) =
q(

x
2)(q−1;q−1)∞(q−1)1−x

(q−x;q−1)∞
for q > 1.

q-analogue of the digamma function is the logarithmic derivative of q-analogue of the
gamma function, that is

ψq(x) =
d
dx

log Γq(x).

q-analogue of the digamma function

ψq(x) = − log(1− q) + log q
∑
n≥0

qn+x

1−qn+x , 0 < q < 1

ψq(x) = − log(q − 1) + log q

(
x− 1

2
−
∑
n≥0

q−n−x

1−q−n−x

)

= − log(q − 1) + log q

(
x− 1

2
−
∑
n≥1

q−nx

1−q−n

)
, q > 1.
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Preliminaries

Kurokawa and Wakayama studied the following q-analogue of the Riemann zeta
function in 2003 ([10])

ζq(s) =

∞∑
n=1

qn

[n]sq
, Re(s) > 1.

Theorem (Kurokawa and Wakayama1)

Suppose q > 1. Then the following statements hold:

1 ζq(s) is meromorphic for s ∈ C.
2 Around s = 1, we have the Laurent series

ζq(s) =
q − 1

log q
.

1

s− 1
+ γ(q) + c1(q)(s− 1) + · · ·

with

γ(q) =

∞∑
n=1

1

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
.

1 N. Kurokawa and M. Wakayama, On q-Analogues of the Euler Constant and Lerch’s Limit
Formula, Proceedings of the American Mathematical Society, 132 (2003), 935 – 943.
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Contd. . .

Theorem

Let q ≥ 2 be an integer. Then

γ(q)− (q − 1) log(q − 1)

log q

is an irrational number. In particular, γ(2) is irrational.

In 1916, Ramanujan defined the three functions:

E2(q) = 1− 24

∞∑
n=1

σ1(n)q
n, E4(q) = 1+240

∞∑
n=1

σ3(n)q
n, E6(q) = 1− 504

∞∑
n=1

σ5(n)q
n.

Theorem (Nesterenko’s Theorem2)

For any q with | q |< 1, the transcendence degree of the field

Q(q, E2(q), E4(q), E6(q))

is at least 3. Thus, for q algebraic, E2(q), E4(q) and E6(q) are algebraically
independent and hence transcendental.

2 Yu. V.Nesternko, Modular functions and transcendence problems, C. R. Acad. Sci. Paris Sér.
I Math., 322, (1996), 909 – 914.
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Contd. . .

Theorem (Duverney and Tachiya3)

Let d(n) be the divisor function and let {an}n≥1 be a sequence of nonzero integers
satisfying log |an| = O(log log n). Then for every integer h ≥ 1, the numbers

1,

∞∑
n=1

d(n)an
qn

,

∞∑
n=1

d(n)an
q2n

, . . . ,

∞∑
n=1

d(n)an
qhn

are linearly independent over Q.

3 D.Duverney and Y.Tachiya, Refinement of the Chowla-Erdős method and linear
independence of certain Lambert series,Forum Math., 31 (2019), 1557 – 1566
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Our Results 4

Theorem

The q-analogue of the Riemann zeta function is meromorphic for s ∈ C and its Laurent
series expansion around s = 1 is given by

ζq(s) =
q−1
log q

. 1
s−1

+ γ0(q) + γ1(q)(s− 1) + γ2(q)(s− 1)2 + γ3(q)(s− 1)3 + · · ·

γk(q) =

k+1∑
i=1

(( ∞∑
n=1

s(n+1,i)
[n]qn!

)
logk+1−i(q−1)

(k+1−i)!

)

+
k∑

j=1

(−1)j

( k−(j−1)∑
i=1

( ∞∑
n=1

s(n+1,i)qnAqn (j−1,j)

n![n]q(qn−1)j
logj q

j!

)
log(k−(j−1)−i)(q−1)

(k−(j−1)−i)!

)

− (q−1) logk(q−1)
2(k!)

+
(q−1) logk+1(q−1)

(k+1)! log q
+

⌈ k
2
⌉∑

i=1

(−1)i+1 (q−1) log2i−1 q logk−(2i−1)(q−1)
B(i)(k−(2i−1))!

where, s(n+ 1, i) are the unsigned Stirling numbers of the first kind, Aqn (j − 1, j) is the

polynomial in qn of degree (j − 1) and coefficients from the jth row in Eulerian numbers
triangle, B(i) is the denominator of non-zero coefficients in the series expansion around

zero of 1
2
cot(x/2) disregarding the first term and ⌈x⌉ denotes the smallest integer greater

than or equal to x.

4 T.Chatterjee and S.Garg, On q-analogue of Euler-Stieltjes Constant, Proc. Amer. Math. Soc.,
151 (2023), 2011–2022.
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Stirling numbers of the first kind

The Stirling numbers of the first kind count permutations according to their number
of cycles (counting fixed points as cycles of length one). The number of permutations
on n elements with k cycles is denoted by s(n, k).

Example: s(4, 2) = 11.
The symmetric group on 4 objects has 3 permutations of the form
(••)(••) (having 2 orbits, each of size 2),
and 8 permutations of the form
(• • •)(•) (having 1 orbit of size 3 and 1 orbit of size 1).

n
k 0 1 2 3 4 5 6 7

0 1

1 0 1

2 0 1 1

3 0 2 3 1

4 0 6 11 6 1

5 0 24 50 35 10 1

6 0 120 274 225 85 15 1

7 0 720 1764 1624 735 175 21 1

Recurrence relation:s(n+ 1, k) = ns(n, k) + s(n, k − 1)
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Eulerian numbers triangle

The classical Eulerian number A(n,m) is the number of permutations of the set of
numbers {1, · · · , n} in which exactly m elements are greater than the previous
element.

Example:For n = 1, 2, 3, we have
n m Permutations A(n,m)

1 0 id A(1,0) = 1

2
0 id A(2,0)= 1
1 (1 2) A(2,1) = 1

3
0 id A(3,0)= 1
1 (1 2), (1 3), (2 3), (1 3 2) A(3 1) = 4
2 (1 2 3) A(3,2)= 1

n
m 0 1 2 3 4 5

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1

Recurrence relation:A(n,m) = (n−m)A(n− 1,m− 1) + (m+ 1)A(n− 1,m)
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Another representation

γk(q) =
(q−1) logk+1(q−1)

(k+1)! log q
+

k−1∑
i=0

(
ak−i logk−i(q−1)

(k−i)!
+

(−1)ibk−i logk−i q

(k−i)!

)

+
∞∑

n=k

s(n+1,k+1)
n![n]q

+

⌈ k
2
⌉∑

i=1

(−1)i+1 (q−1) log2i−1 q logk−(2i−1)(q−1)
B(i)(k−(2i−1))!

,

where ak−i and bk−i are the coefficients of logk−i(q − 1) and logk−i q respectively.

Example

γ1(q) =
(q−1) log2(q−1)

2 log q
+

(
∞∑

n=1

1
[n]q

− q−1
2

)
log(q − 1)

−

(
∞∑

n=1

qn

[n]q(qn−1)

)
log q +

∞∑
n=1

s(n+1,2)
n![n]q

+ (q−1) log q
12

.

So here, a1 =
∑∞

n=1
1

[n]q
− q−1

2
and b1 = −

(
∞∑

n=1

qn

[n]q(qn−1)

)
.
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(k−i)!
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n![n]q
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Here we obtain γ2(q) as follows:

Example

γ2(q) =
(q−1) log3(q−1)

3! log q
+

(
∞∑

n=1

1
[n]q

− q−1
2

)
log2(q−1)

2!

+

(
−

∞∑
n=1

(qn) log q
[n]q(qn−1)

+

∞∑
n=1

s(n+1,2)
n![n]q

)
log(q − 1)

+

(
∞∑

n=1

qn(qn+1)

[n]q(qn−1)2

)
log2 q

2
−

(
∞∑

n=1

s(n+1,2)qn

n![n]q(qn−1)

)
log q

+
∞∑

n=2

s(n+1,3)
n![n]q

+ (q−1) log q log(q−1)
12

,

which again can be rewritten in the same form with

a2 =
∞∑

n=1

1
[n]q

− q−1
2

and a1 = −
∞∑

n=1

qn log q
[n]q(qn−1)

+

∞∑
n=1

s(n+1,2)
n![n]q

,

b2 =

∞∑
n=1

qn(qn+1)
[n]q(qn−1)

and b1 = −

(
∞∑

n=1

s(n+1,2)qn

n![n]q(qn−1)

)
.
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Contd. . .

Define the normalized q-analogue of the Euler constant by

γ∗
0 (q) = γ0(q)−

(q − 1) log(q − 1)

log q
.

Theorem

For integers r ≥ 1 and q > 1, the set of numbers

{1, γ∗
0 (q), γ

∗
0 (q

2), γ∗
0 (q

3), . . . , γ∗
0 (q

r)}

is linearly independent over Q.
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Contd. . .

Lemma

5For every integer q > 1,
∞∑

n=1

σ1(n)

qn
is a transcendental number, where σ1(n) is the

sum of the divisors of n.

Lemma

For every integer t > 1,

∞∑
n=1

tn

(tn − 1)2
=

∞∑
n=1

σ1(n)

tn
.

Theorem

Let k = 1 and q = 2. Then

1

log 2

(
γ1(2)−

∞∑
n=1

Hn

2n − 1

)

is a transcendental number, where Hn is the nth harmonic number.

5 P.Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc., 12 (1948), 63 –
66
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Thank You!
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