Some degree problems in number fields

Lukas Maciulevičius

Vilnius University
Institute of Mathematics

Nancy 2023

Sum-feasible and product-feasible triplets

Definition

A triplet $(a, b, c) \in \mathbb{N}^{3}$ is called sum-feasible (resp.
product-feasible) if there exist algebraic numbers α and β such that $\operatorname{deg} \alpha=a, \operatorname{deg} \beta=b$ and $\operatorname{deg}(\alpha+\beta)=c($ resp. $\operatorname{deg}(\alpha \beta)=c)$.

For example, $(2,2,4)$ is sum-feasible:

$$
\alpha=\sqrt{2}, \beta=\sqrt{3}, \alpha+\beta=\sqrt{2}+\sqrt{3} .
$$

Also $(2,2,4)$ is product-feasible (e.g. $\alpha=\sqrt{2}, \beta=1+\sqrt{3}$).
In 2012 Drungilas, Dubickas and Smyth ${ }^{1}$ proposed a problem to find all possible sum-feasible triplets.

Theorem (Isaacs, 1970)
If $\operatorname{deg} \alpha=a, \operatorname{deg} \beta=b$ and $\operatorname{gcd}(a, b)=1$ then $\operatorname{deg}(\alpha+\beta)=a b$.
${ }^{1}$ P. Drungilas, A. Dubickas, C. J. Smyth, A degree problem of two algebraic numbers and their sum, Publ. Mat. Barc. 56 (2) (2012), 413-448.

Compositum-feasible triplets

Definition

A triplet $(a, b, c) \in \mathbb{N}^{3}$ is called compositum-feasible if there exist number fields K and L such that $[K: \mathbb{Q}]=a,[L: \mathbb{Q}]=b$ and $[K L: \mathbb{Q}]=c$ (here $K L$ denotes the compositum of K and L).

Let \mathcal{C}, \mathcal{S} and \mathcal{P} denote sets of all possible compositum-feasible, sum-feasible and product-feasible triplets, respectively.

It is proved by Drungilas, Dubickas and Smyth that

$$
\mathcal{C} \subsetneq \mathcal{S} \subsetneq \mathcal{P}
$$

Both inclusions are indeed strict:

- $(n, n, 1) \in \mathcal{S} \forall n \in \mathbb{N}$, but $(n, n, 1) \notin \mathcal{C}$ for $n>1$.
- $(2,3,3) \in \mathcal{P}$ (e.g. $\alpha=e^{\frac{2 \pi i}{3}}, \beta=\sqrt[3]{2}$), but $(2,3,3) \notin \mathcal{S}$ by the result of Isaacs.

Related results

Obvious necessary conditions:

- if $(a, b, c) \in \mathbb{N}^{3}, a \leqslant b \leqslant c$, is compositum-feasible, sum-feasible or product-feasible then $c \leqslant a b$.
- if $(a, b, c) \in \mathbb{N}^{3}, a \leqslant b \leqslant c$, is compositum-feasible then $a \mid c$ and $b \mid c$.

In 2012-2013 Drungilas, Dubickas, Luca and Smyth described all sum-feasible triplets $(a, b, c) \in \mathbb{N}^{3}, a \leqslant b \leqslant c, b \leqslant 7$, and also all possible compositum-feasible triplets under the same restrictions.

We say that a triplet $(a, b, c) \in \mathbb{N}^{3}$ satisfies the exponent triangle inequality with respect to a prime number p if

$$
\begin{gather*}
\operatorname{ord}_{p} a+\operatorname{ord}_{p} b \geqslant \operatorname{ord}_{p} c, \operatorname{ord}_{p} b+\operatorname{ord}_{p} c \geqslant \operatorname{ord}_{p} a \text { and } \tag{1}\\
\operatorname{ord}_{p} a+\operatorname{ord}_{p} c \geqslant \operatorname{ord}_{p} b .
\end{gather*}
$$

Theorem (Drungilas, Dubickas, Smyth, 2012)
If (a, b, c) satisfies (1) with respect to every prime number then $(a, b, c) \in \mathcal{S}$.

Theorem (Drungilas, L.M., 2019²)
(1) Let $a \leqslant 8 \leqslant c$. Then $(a, 8, c) \in \mathcal{C}$ if and only if $c \leqslant 8 a, a \mid c$ and $b \mid c$ with a single exceptional triplet $(8,8,40)$.
(2) Let $a \leqslant 9 \leqslant c$. Then $(a, 9, c) \in \mathcal{C}$ if and only if $c \leqslant 9 a, a \mid c$ and $b \mid c$ with two exceptional triplets $(9,9,45)$ and $(9,9,63)$.

Theorem (Drungilas, L.M.)
Suppose $n \in \mathbb{N}$ and a prime p satisfy $\frac{n}{2}<p<n-2$. Then $(n, n, n p) \notin \mathcal{P}$, and therefore $(n, n, n p) \notin \mathcal{C},(n, n, n p) \notin \mathcal{S}$.

Theorem (Drungilas, L.M.)

Suppose $n \geqslant 4$. Then $(n, n, n(n-2)) \in \mathcal{C}$ for even n and $(n, n, n(n-2)) \notin \mathcal{P}$ for odd n.

[^0]
Main results

Theorem (L.M., 2023 ${ }^{3}$)
All the triplets $(a, b, c) \in \mathcal{P}$ with $a \leqslant b \leqslant c, b \leqslant 7$ are given in the following table with five exceptions that are circled.

$b \backslash a$	1	2	3	4	5	6	7
1	1						
2	2	2, 4					
3	3	3,6	3, 6, 9				
4	4	4, 8	6,12	$\begin{aligned} & 4,6,8, \\ & 12,16 \\ & \hline \end{aligned}$			
5	5	10	15	5, 10, 20	$\begin{aligned} & 5,10 \\ & 20,25 \\ & \hline \end{aligned}$		
6	6	6,12	$\begin{aligned} & 6,9 \\ & 12,18 \end{aligned}$	$\begin{aligned} & 6,8 \\ & 12,24 \end{aligned}$	(10), (15), 30	$\begin{aligned} & 6,8,9 \\ & 12,15,18 \\ & 24,30,36 \end{aligned}$	
7	7	14	21	(7), (14), 28	35	$\begin{aligned} & 7,14, \\ & 21,42 \end{aligned}$	$\begin{aligned} & 7,14,21 \\ & 28,42,49 \\ & \hline \end{aligned}$

${ }^{3}$ L. Maciulevičius, On the degree of product of two algebraic numbers, Publ. Mathematics, 11 (9), Paper No. 2131

Theorem (Virbalas, 2023)
Let α and β be algebraic numbers, $\operatorname{deg} \alpha=p, \operatorname{deg} \beta=m$, where $p>2$ is a prime, $p \nmid m$ and $p-1 \nmid m$. Then $\operatorname{deg}(\alpha \beta)=m p$.
E.g., $\operatorname{deg} \alpha=5, \operatorname{deg} \beta=6 \Rightarrow \operatorname{deg}(\alpha \beta)=5 \cdot 6=30$. Hence $(5,6,10),(5,6,15) \notin \mathcal{P}$. Analogously $(4,7,7),(4,7,14) \notin \mathcal{P}$.

Recently we have showed with Dubickas that $(4,6,8) \notin \mathcal{P}$.

Conjecture for compositum-feasible triplets

In 2012 Drungilas, Dubickas and Smyth proposed the following conjecture:

Conjecture
If $(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in \mathcal{C}$ then $\left(a a^{\prime}, b b^{\prime}, c c^{\prime}\right) \in \mathcal{C}$.
In 2016 Drungilas and Dubickas proved that this conjecture is true if the answer to the inverse Galois problem is positive. Recall that the inverse Galois problem asks whether every finite group occurs as a Galois group of some Galois extension K over \mathbb{Q}.

Theorem
If every finite group occurs as a Galois group of some Galois extension K / \mathbb{Q} then the Conjecture is true.

Irreducible compositum-feasible trilpets

In other words, assuming affirmative answer to the inverse Galois problem, the set \mathcal{C} forms a semigroup with respect to the multiplication defined by

$$
\begin{equation*}
(a, b, c) \cdot\left(a^{\prime}, b^{\prime}, c^{\prime}\right):=\left(a a^{\prime}, b b^{\prime}, c c^{\prime}\right) \tag{2}
\end{equation*}
$$

It is natural to ask which elements of \mathcal{C} are irreducible.
Definition
A triplet $(A, B, C) \in \mathcal{C}$ is called irreducible if it cannot be written as

$$
(A, B, C)=(a, b, c) \cdot\left(a^{\prime}, b^{\prime}, c^{\prime}\right)
$$

where $(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in \mathcal{C},(a, b, c) \neq(1,1,1)$ and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \neq(1,1,1)$.

Proposition (L.M., 2023)
For any integer $n \geqslant 2$ the compositum-feasible triplet ($n, n, n(n-1)$) is irreducible. ${ }^{4}$

Among the compositum-feasible triplets (a, b, c), $a \leqslant b \leqslant c$, $b \leqslant 9$, the only irreducible triplets are of the form

$$
(1, p, p),(p, p, p d),(n, n, n(n-1))
$$

where p is prime, $1 \leqslant d<p$ and $n \geqslant 2$.

Problem

Find all irreducible compositum-feasible triplets.
${ }^{4}$ It is proved by Drungilas, Dubickas and Smyth that $(n, n, n(n-1)) \in \mathcal{C}$ for any $n \geqslant 2$.

Thank you!

[^0]: ${ }^{2}$ P. Drungilas, L. Maciulevičius, A degree problem for the compositum of two number fields, Publ. Lith. Math. J. 59 (1) (2019), 39-47.

