Some degree problems in number fields

Lukas Maciulevičius

Vilnius University Institute of Mathematics

Nancy 2023

Sum-feasible and product-feasible triplets

Definition

A triplet $(a, b, c) \in \mathbb{N}^3$ is called sum-feasible (resp. product-feasible) if there exist algebraic numbers α and β such that $\deg \alpha = a$, $\deg \beta = b$ and $\deg(\alpha + \beta) = c$ (resp. $\deg(\alpha\beta) = c$).

For example, (2, 2, 4) is sum-feasible:

$$\alpha = \sqrt{2}, \ \beta = \sqrt{3}, \ \alpha + \beta = \sqrt{2} + \sqrt{3}.$$

Also (2,2,4) is product-feasible (e.g. $\alpha = \sqrt{2}$, $\beta = 1 + \sqrt{3}$).

In 2012 Drungilas, Dubickas and Smyth¹ proposed a problem to find all possible sum-feasible triplets.

Theorem (Isaacs, 1970)

If deg $\alpha = a$, deg $\beta = b$ and gcd(a, b) = 1 then deg $(\alpha + \beta) = ab$.

¹P. Drungilas, A. Dubickas, C. J. Smyth, A degree problem of two algebraic numbers and their sum, Publ. Mat. Barc. **56** (2) (2012), 413-448.

Definition

A triplet $(a, b, c) \in \mathbb{N}^3$ is called compositum-feasible if there exist number fields K and L such that $[K : \mathbb{Q}] = a$, $[L : \mathbb{Q}] = b$ and $[KL : \mathbb{Q}] = c$ (here KL denotes the compositum of K and L).

Let C, S and P denote sets of all possible compositum-feasible, sum-feasible and product-feasible triplets, respectively.

It is proved by Drungilas, Dubickas and Smyth that

$$\mathcal{C} \subsetneq \mathcal{S} \subsetneq \mathcal{P}.$$

Both inclusions are indeed strict:

- $(n, n, 1) \in S \ \forall n \in \mathbb{N}$, but $(n, n, 1) \notin C$ for n > 1.
- $(2,3,3) \in \mathcal{P}$ (e.g. $\alpha = e^{\frac{2\pi i}{3}}$, $\beta = \sqrt[3]{2}$), but $(2,3,3) \notin S$ by the result of Isaacs.

Related results

Obvious necessary conditions:

- if (a, b, c) ∈ N³, a ≤ b ≤ c, is compositum-feasible, sum-feasible or product-feasible then c ≤ ab.
- if $(a, b, c) \in \mathbb{N}^3$, $a \leq b \leq c$, is compositum-feasible then a|c and b|c.

In 2012-2013 Drungilas, Dubickas, Luca and Smyth described all sum-feasible triplets $(a, b, c) \in \mathbb{N}^3$, $a \leq b \leq c$, $b \leq 7$, and also all possible compositum-feasible triplets under the same restrictions.

We say that a triplet $(a, b, c) \in \mathbb{N}^3$ satisfies the exponent triangle inequality with respect to a prime number p if

$$\operatorname{ord}_{p} a + \operatorname{ord}_{p} b \ge \operatorname{ord}_{p} c, \ \operatorname{ord}_{p} b + \operatorname{ord}_{p} c \ge \operatorname{ord}_{p} a \text{ and}$$

$$\operatorname{ord}_{p} a + \operatorname{ord}_{p} c \ge \operatorname{ord}_{p} b.$$

$$(1)$$

Theorem (Drungilas, Dubickas, Smyth, 2012)

If (a, b, c) satisfies (1) with respect to every prime number then $(a, b, c) \in S$.

Theorem (Drungilas, L.M., 2019²)

- Let a ≤ 8 ≤ c. Then (a,8,c) ∈ C if and only if c ≤ 8a, a|c and b|c with a single exceptional triplet (8,8,40).
- 2 Let a ≤ 9 ≤ c. Then (a,9,c) ∈ C if and only if c ≤ 9a, a|c and b|c with two exceptional triplets (9,9,45) and (9,9,63).

Theorem (Drungilas, L.M.)

Suppose $n \in \mathbb{N}$ and a prime p satisfy $\frac{n}{2} . Then <math>(n, n, np) \notin \mathcal{P}$, and therefore $(n, n, np) \notin \mathcal{C}$, $(n, n, np) \notin \mathcal{S}$.

Theorem (Drungilas, L.M.)

Suppose $n \ge 4$. Then $(n, n, n(n-2)) \in C$ for even n and $(n, n, n(n-2)) \notin P$ for odd n.

²P. Drungilas, L. Maciulevičius, *A degree problem for the compositum of two number fields*, Publ. Lith. Math. J. **59** (1) (2019), 39-47.

Theorem (L.M., 2023³)

All the triplets $(a, b, c) \in \mathcal{P}$ with $a \leq b \leq c$, $b \leq 7$ are given in the following table with five exceptions that are circled.

b∖a	1	2	3	4	5	6	7
1	1						
2	2	2, 4					
3	3	3, 6	3, 6, 9				
4	4	4, 8	6, 12	4, 6, 8, 12, 16			
5	5	10	15	5, 10, 20	5, 10, 20, 25		
6	6	6, 12	6, 9, 12, 18	6, <u>(8),</u> 12, 24	(10), (15), 30	6, 8, 9, 12, 15, 18, 24, 30, 36	
7	7	14	21	7, 14, 28	35	7, 14, 21, 42	7, 14, 21, 28, 42, 49

³L. Maciulevičius, *On the degree of product of two algebraic numbers*, Publ. Mathematics, **11** (9), Paper No. 2131

Theorem (Virbalas, 2023)

Let α and β be algebraic numbers, deg $\alpha = p$, deg $\beta = m$, where p > 2 is a prime, $p \nmid m$ and $p - 1 \nmid m$. Then deg $(\alpha \beta) = mp$.

E.g., deg $\alpha = 5$, deg $\beta = 6 \Rightarrow deg(\alpha\beta) = 5 \cdot 6 = 30$. Hence $(5, 6, 10), (5, 6, 15) \notin \mathcal{P}$. Analogously $(4, 7, 7), (4, 7, 14) \notin \mathcal{P}$.

Recently we have showed with Dubickas that $(4, 6, 8) \notin \mathcal{P}$.

In 2012 Drungilas, Dubickas and Smyth proposed the following conjecture:

Conjecture

If $(a, b, c), (a', b', c') \in \mathcal{C}$ then $(aa', bb', cc') \in \mathcal{C}$.

In 2016 Drungilas and Dubickas proved that this conjecture is true if the answer to the *inverse Galois problem* is positive. Recall that the inverse Galois problem asks whether every finite group occurs as a Galois group of some Galois extension K over \mathbb{Q} .

Theorem

If every finite group occurs as a Galois group of some Galois extension K/\mathbb{Q} then the Conjecture is true.

In other words, assuming affirmative answer to the inverse Galois problem, the set C forms a semigroup with respect to the multiplication defined by

$$(a, b, c) \cdot (a', b', c') := (aa', bb', cc').$$
 (2)

It is natural to ask which elements of C are irreducible.

Definition

A triplet $(A, B, C) \in C$ is called irreducible if it cannot be written as

$$(A, B, C) = (a, b, c) \cdot (a', b', c'),$$

where $(a, b, c), (a', b', c') \in C$, $(a, b, c) \neq (1, 1, 1)$ and $(a', b', c') \neq (1, 1, 1)$.

Proposition (L.M., 2023)

For any integer $n \ge 2$ the compositum-feasible triplet (n, n, n(n-1)) is irreducible.⁴

Among the compositum-feasible triplets (a, b, c), $a \le b \le c$, $b \le 9$, the only irreducible triplets are of the form

$$(1, p, p), (p, p, pd), (n, n, n(n-1)),$$

where p is prime, $1 \leq d < p$ and $n \geq 2$.

Problem

Find all irreducible compositum-feasible triplets.

⁴It is proved by Drungilas, Dubickas and Smyth that $(n, n, n(n-1)) \in C$ for any $n \ge 2$.

Thank you!