32 Èmes Journées Arithmétiques 2023 SOLUTIONS TO POLYNOMIAL CONGRUENCES WITH VARIABLES RESTRICTED TO A BOX

TODD COCHRANE, KONSTANTINOS KYDONIATIS, AND CRAIG SPENCER
Kansas State University

Thursday, 6 July

Introduction

The goal of this talk is to obtain solutions to the congruence

$$
f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right) \equiv c \quad(\bmod q) .
$$

with the variables restricted to a cube \mathcal{B}

$$
\mathcal{B}:=\left\{\underline{x} \in \mathbb{Z}^{n}: c_{i}+1 \leq x_{i} \leq c_{i}+B, 1 \leq i \leq n\right\}
$$

and optimize the size of B. For convenience we also use the notation $\mathcal{B}(c, B)$ when $c_{i}=c, \forall i$ and $\mathcal{B}_{0}=\mathcal{B}(0, B)$

Theorem

More specifically we obtain the following theorem on the distribution of the solutions.
Theorem
Let q, n, k be a positive integers, c be an integer, and $f_{1}(x), \ldots, f_{n}(x) \in \mathbb{Z}[x]$ be polynomials of degree k whose leading coefficients are relatively prime to q. Suppose that for $1 \leq i \leq n$ and $p \mid q$ with p prime, $f_{i}(x)$ is not constant modulo p.There exists a constant $N(k)$ such that if $n>N(k)$ and \mathcal{B} is a cube of side length $B>\max \left\{q^{1 / k}, k\right\}$, then there is a solution of the congruence
$\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \equiv c(\bmod q)$ in \mathcal{B}.

Quality of the bound

This theorem is a generalization of the work of T.Cochrane, M. Ostergaard, and C. Spencer, which handles the case where each $f_{i}(x)$ is of the form $a_{i} x^{k}$ with $\left(a_{i}, q\right)=1$. This is similar to how various authors have studied a generalized Waring problem that allows for polynomial summands; see for instance the work of Kamke, Hua, Načaev, Wooley, and Ford.

The theorem is best possible up to the determination of $N(k)$ and improvement in the constant 1 in front of $q^{1 / k}$.

Quality of the bound

This theorem is a generalization of the work of T.Cochrane, M. Ostergaard, and C. Spencer, which handles the case where each $f_{i}(x)$ is of the form $a_{i} x^{k}$ with $\left(a_{i}, q\right)=1$. This is similar to how various authors have studied a generalized Waring problem that allows for polynomial summands; see for instance the work of Kamke, Hua, Načaev, Wooley, and Ford.

The theorem is best possible up to the determination of $N(k)$ and improvement in the constant 1 in front of $q^{1 / k}$.

Indeed, consider the congruence

$$
x_{1}^{k}+\cdots+x_{n}^{k} \equiv\lceil q / 2\rceil \quad(\bmod q),
$$

and box \mathcal{B} with $1 \leq x_{i} \leq B, 1 \leq i \leq n$. Plainly with $n=N(k)$ we will need $B>_{k} q^{1 / k}$ in order to solve this congruence. In the statement of the theorem, the condition that $f_{i}(x)$ is not constant modulo p is equivalent to requiring that $\left(x^{p}-x\right) \nmid\left(f_{i}(x)-f_{i}(0)\right)$ over $(\mathbb{Z} / p \mathbb{Z})[x]$.

General Upper Bound

Crucial to the proof, is an upper bound for the number of the solutions of

$$
f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right) \equiv c \quad(\bmod q) .
$$

We denote that number as $N_{q}(\mathcal{B})$.

General Upper Bound

Crucial to the proof, is an upper bound for the number of the solutions of

$$
f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right) \equiv c \quad(\bmod q) .
$$

We denote that number as $N_{q}(\mathcal{B})$.
Theorem
Let q, n, k be a positive integers, c be an integer, and $f_{1}(x), \ldots, f_{n}(x) \in \mathbb{Z}[x]$ be degree- k polynomials whose leading coefficients are relatively prime to q. Suppose $n \geq k^{2}+k+2$ and \mathcal{B} be is a cube of edge length $B \leq q$. Then

$$
N_{q}(\mathcal{B}) \lll k \frac{B^{n}}{q}+B^{n-k}
$$

Proof of the Upper Bound

For the proof of this theorem the following notation will be used. Let \mathbb{Z}_{q} denote the residue class ring modulo q and $e_{q}(\cdot):=e^{2 \pi i(\cdot) / q}$, an additive character on \mathbb{Z}_{q}. For any subsets $S_{1}, \ldots, S_{2 n}$ of \mathbb{Z}_{q}, put $\mathcal{S}=S_{1} \times \cdots \times S_{n}$. Define

$$
I_{n, k, f}(\mathcal{S}):=\#\left\{(\underline{x}, \underline{y}) \in \mathcal{S} \times \mathcal{S}: \sum_{i=1}^{n} f\left(x_{i}\right) \equiv \sum_{i=1}^{n} f\left(y_{i}\right) \quad(\bmod q)\right\} .
$$

along with $\mathcal{T}=S_{1} \times \cdots \times S_{2 n}$ and \mathcal{S}_{i}^{n} to be the cartesian product of S_{i} with itself n times. We begin the proof of the theorem with the following lemma.

Proof of the Upper Bound

For the proof of this theorem the following notation will be used. Let \mathbb{Z}_{q} denote the residue class ring modulo q and $e_{q}(\cdot):=e^{2 \pi i(\cdot) / q}$, an additive character on \mathbb{Z}_{q}. For any subsets $S_{1}, \ldots, S_{2 n}$ of \mathbb{Z}_{q}, put $\mathcal{S}=S_{1} \times \cdots \times S_{n}$. Define

$$
I_{n, k, f}(\mathcal{S}):=\#\left\{(\underline{x}, \underline{y}) \in \mathcal{S} \times \mathcal{S}: \sum_{i=1}^{n} f\left(x_{i}\right) \equiv \sum_{i=1}^{n} f\left(y_{i}\right) \quad(\bmod q)\right\} .
$$

along with $\mathfrak{T}=S_{1} \times \cdots \times S_{2 n}$ and \mathcal{S}_{i}^{n} to be the cartesian product of S_{i} with itself n times. We begin the proof of the theorem with the following lemma.

Lemma

Let q, n, k be a positive integers, c be an integer, and $f_{1}(x), \ldots, f_{2 n}(x) \in \mathbb{Z}[x]$ be degree-k polynomials whose leading coefficients are relatively prime to q. Then

$$
\#\left\{\underline{x} \in \mathcal{T}: \sum_{i=1}^{2 n} f_{i}\left(x_{i}\right) \equiv c \quad(\bmod q)\right\} \leq \prod_{i=1}^{2 n} I_{n, k, f_{i}}\left(\mathcal{S}_{i}^{n}\right)^{\frac{1}{2 n}}
$$

Proof of Lemma

Proof.
We have
$\#\left\{\underline{x} \in \mathcal{T}: \sum_{i=1}^{2 n} f_{i}\left(x_{i}\right) \equiv c \quad(\bmod q)\right\}=\frac{1}{q} \sum_{\underline{x} \in \mathcal{T}} \sum_{\lambda=1}^{q} e_{q}\left(\lambda\left(\sum_{i=1}^{2 n} f_{i}\left(x_{i}\right)-c\right)\right)$
$\leq \frac{1}{q} \sum_{\lambda=1}^{q}\left|e_{q}(-\lambda c) \prod_{i=1}^{2 n} \sum_{x_{i} \in S_{i}} e_{q}\left(\lambda f_{i}\left(x_{i}\right)\right)\right|$
$\leq \frac{1}{q}\left[\sum_{\lambda=1}^{q}\left|\sum_{x_{1} \in S_{1}} e_{q}\left(\lambda f_{1}\left(x_{1}\right)\right)\right|^{2 n}\right]^{\frac{1}{2 n}} \cdots\left[\sum_{\lambda=1}^{q}\left|\sum_{x_{2 n} \in S_{2 n}} e_{q}\left(\lambda f_{2 n}\left(x_{2 n}\right)\right)\right|^{2 n}\right]^{\frac{1}{2 n}}$,
by Hölder's inequality.

Proof.

Now, for $1 \leq i \leq n$, the sum

$$
\sum_{\lambda=1}^{q}\left|\sum_{x_{i} \in S_{i}} e_{q}\left(\lambda f_{i}\left(x_{i}\right)\right)\right|^{2 n}
$$

is q times the number of solution of the congruence

$$
f_{i}\left(x_{1}\right)+\cdots+f_{i}\left(x_{n}\right) \equiv f_{i}\left(y_{1}\right)+\cdots+f_{i}\left(y_{n}\right) \quad(\bmod q)
$$

with variables restricted to S_{i}. Therefore,

$$
\#\left\{\underline{x} \in \mathcal{T}: \sum_{i=1}^{2 n} f_{i}\left(x_{i}\right) \equiv c \quad(\bmod q)\right\} \leq \frac{1}{q} \prod_{i=1}^{2 n}\left(q I_{n, k, f_{i}}\left(S_{i}^{n}\right)\right)^{\frac{1}{2 n}}=\prod_{i=1}^{2 n} I_{n, k, f_{i}}\left(S_{i}^{n}\right)^{\frac{1}{2 n}}
$$

Relating $I_{n, k, f}(\mathcal{B})$ to $J_{n, k}(B)$ and $J_{n, k}^{*}(B)$

A bound will be acquired for $I_{n, k, f}(\mathcal{B})$ with the help from bounds of $J_{n, k}(B)$ the number of solutions to the system of congruences

$$
\begin{align*}
x_{1}+\cdots+x_{n} & \equiv y_{1}+\cdots+y_{n} \quad(\bmod q) \\
x_{1}^{2}+\cdots+x_{n}^{2} & \equiv y_{1}^{2}+\cdots+y_{n}^{2} \quad(\bmod q) \\
& \vdots \tag{1}\\
x_{1}^{k}+\cdots+x_{n}^{k} & \equiv y_{1}^{k}+\cdots+y_{n}^{k} \quad(\bmod q)
\end{align*}
$$

with $(\underline{x}, \underline{y}) \in \mathcal{B}_{0} \times \mathcal{B}_{0}$. Those are achieved utilizing known results for $J_{n, k}^{*}(B)$, the number of solutions of the same system over the integers.

More specifically

Lemma

For any positive integers B, n, k, q with $B \leq q$, integer c, cube $\mathcal{B}(c, B)$ of the aforementioned shape, and polynomial $f(x)=\alpha_{k} x^{k}+\cdots+\alpha_{0} \in \mathbb{Z}[x]$ with $\left(\alpha_{k}, q\right)=1$, we have

$$
I_{n, k, f}(\mathcal{B}) \leq(2 n)^{k-1} B^{\frac{k(k-1)}{2}} J_{n, k}(B) .
$$

The fundamental idea of the proof is that the congruence we are interested in satisfies a system of equations whose number of solutions is bounded by $J_{n, k}(B)$.

More specifically

Lemma

For any positive integers B, n, k, q with $B \leq q$, integer c, cube $\mathcal{B}(c, B)$ of the aforementioned shape, and polynomial $f(x)=\alpha_{k} x^{k}+\cdots+\alpha_{0} \in \mathbb{Z}[x]$ with $\left(\alpha_{k}, q\right)=1$, we have

$$
I_{n, k, f}(\mathcal{B}) \leq(2 n)^{k-1} B^{\frac{k(k-1)}{2}} J_{n, k}(B) .
$$

The fundamental idea of the proof is that the congruence we are interested in satisfies a system of equations whose number of solutions is bounded by $J_{n, k}(B)$. That is:

$$
\left(x_{1}-c\right)+\cdots+\left(x_{n}-c\right) \equiv\left(y_{1}-c\right)+\cdots+\left(y_{n}-c\right)+h_{1} \quad(\bmod q)
$$

$$
\begin{align*}
\left(x_{1}-c\right)^{k-1}+\cdots+\left(x_{n}-c\right)^{k-1} & \equiv\left(y_{1}-c\right)^{k-1}+\cdots+\left(y_{n}-c\right)^{k-1}+h_{k-1} \quad(\bmod q) \tag{2}\\
f\left(x_{1}\right)+\cdots+f\left(x_{n}\right) & \equiv f\left(y_{1}\right)+\cdots+f\left(y_{n}\right) \quad(\bmod q)
\end{align*}
$$

with $(\underline{x}, \underline{y}) \in \mathcal{B} \times \mathcal{B}$

Proof of 4

The number of solutions, $N(\underline{h})$, of the previous system, is bounded from above by the case were all the $h_{j}=0$. This follows by applying the triangle inequality to the exponential sum representation for the number of solutions of the system,

$$
\frac{1}{q^{k}} \sum_{\lambda_{1}=1}^{q} \cdots \sum_{\lambda_{k}=1}^{q} e_{q}\left(-\lambda_{1} h_{1}-\cdots-\lambda_{k-1} h_{k-1}\right) \sum_{\underline{x} \in \mathcal{B} \underline{y} \in \mathcal{B}}
$$

$$
e_{q}\left[\lambda_{k}\left(\sum_{i=1}^{n} f\left(x_{i}\right)-\sum_{i=1}^{n} f\left(y_{i}\right)\right)+\sum_{j=1}^{k-1} \lambda_{j}\left(\sum_{i=1}^{n}\left(x_{i}-c\right)^{j}-\sum_{i=1}^{n}\left(y_{i}-c\right)^{j}\right)\right] .
$$

By a change of variables $x_{i} \rightarrow x_{i}+c, y_{i} \rightarrow y_{i}+c, N(\underline{0})$ equals the number of solutions of the system of congruences

$$
x_{1}+\cdots+x_{n} \equiv y_{1}+\cdots+y_{n} \quad(\bmod q)
$$

$$
\begin{aligned}
x_{1}^{k-1}+\cdots+x_{n}^{k-1} & \equiv y_{1}^{k-1}+\cdots+y_{n}^{k-1} \quad(\bmod q) \\
f\left(x_{1}+c\right)+\cdots+f\left(x_{n}+c\right) & \equiv f\left(y_{1}+c\right)+\cdots+f\left(y_{n}+c\right) \quad(\bmod q),
\end{aligned}
$$

with $(\underline{x}, \underline{y}) \in \mathcal{B}_{0} \times \mathcal{B}_{0}$.

By a change of variables $x_{i} \rightarrow x_{i}+c, y_{i} \rightarrow y_{i}+c, N(\underline{0})$ equals the number of solutions of the system of congruences

$$
\begin{aligned}
x_{1}+\cdots+x_{n} & \equiv y_{1}+\cdots+y_{n} \quad(\bmod q) \\
\vdots & \\
x_{1}^{k-1}+\cdots+x_{n}^{k-1} & \equiv y_{1}^{k-1}+\cdots+y_{n}^{k-1} \quad(\bmod q) \\
f\left(x_{1}+c\right)+\cdots+f\left(x_{n}+c\right) & \equiv f\left(y_{1}+c\right)+\cdots+f\left(y_{n}+c\right) \quad(\bmod q),
\end{aligned}
$$

with $(\underline{x}, \underline{y}) \in \mathcal{B}_{0} \times \mathcal{B}_{0}$.
By the Binomial Theorem, the congruence

$$
f\left(x_{1}+c\right)+\cdots+f\left(x_{n}+c\right) \equiv f\left(y_{1}+c\right)+\cdots+f\left(y_{n}+c\right) \quad(\bmod q)
$$

can be replaced with

$$
x_{1}^{k}+\cdots+x_{n}^{k} \equiv y_{1}^{k}+\cdots+y_{n}^{k} \quad(\bmod q) .
$$

since the leading coefficients are relatively prime to q. The proof is complete by taking into account the contribution of all possible options for the h_{i}.
Therefore, $N\left(h_{1}, \ldots, h_{k-1}\right) \leq N(\underline{0}) \leq J_{n, k}(B)$ uniformly.

Correlation of $J_{n, k}(B)$ and $J_{n, k}^{*}(B)$

By results of Cochrane, Ostergaard, and Spencer, which relates $J_{n, k}(B)$ to $J_{n, k}^{*}(B)$, the following bound is immediate.

Lemma

For any positive integers B, n, k, q with $B \leq q$, integer c, cube $\mathcal{B}(c, B)$, and polynomial $f(x)=\alpha_{k} x^{k}+\cdots+\alpha_{0} \in \mathbb{Z}[x]$ with $\left(\alpha_{k}, q\right)=1$, we have

$$
I_{n, k, f}(\mathcal{B}) \leq 5(2 n)^{k} B^{\frac{1}{2} k(k-1)}\left(\frac{B^{k}}{q}+\frac{1}{2 n}\right) J_{n, k}^{*}(B) .
$$

Bounds for $J_{n, k}^{*}(B)$

The task of estimating $J_{n, k}^{*}(B)$ has been a central problem in additive number theory since Vinogradov's seminal work on Waring's problem. By the recent work of Bourgain, Demeter, and Guth and Wooley, there exists a positive constant $c_{1}(n, k)$ such that for $n>\frac{1}{2} k(k+1)$, one has

$$
J_{n, k}^{*}(B) \leq c_{1}(n, k) B^{2 n-\frac{1}{2} k(k+1)} .
$$

Here is where the condition $n \geq k^{2}+k+2$ stems from. Combining this result with the previous upper bound for $I_{n, k, f}(\mathcal{B})$, we obtain the following upper bound.

Finalizing the proof of the upper bound

Proposition

For any positive integers B, n, k, q with $B \leq q$ and $n>\frac{1}{2} k(k+1)$, integer c, cube $\mathcal{B}(c, B)$, and polynomial $f(x)=\alpha_{k} x^{k}+\cdots+\alpha_{0} \in \mathbb{Z}[x]$ with $\left(\alpha_{k}, q\right)=1$, we have

$$
I_{n, k, f}(\mathcal{B}) \leq 5 c_{1}(n, k)(2 n)^{k}\left(\frac{B^{2 n}}{q}+\frac{1}{2 n} B^{2 n-k}\right)
$$

where $c_{1}(n, k)$ is the positive constant appearing in the previous bound.
The proof of upper bound for the number of the solutions is now complete if one combines the above proposition with a previous lemma.

The value set of $\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$

The reason we we went through the trouble of proving this upper bound was to show that the value set of a sum of such polynomials is of comparable size to the size of the modulus. Specifically

Lemma

For any positive integers k, n, B, q with $n \geq \frac{1}{2}\left(k^{2}+k+2\right)$, cube \mathcal{B} with side length $B>q^{1 / k}$, and polynomials $f_{1}(x), \ldots, f_{n}(x) \in \mathbb{Z}[x]$ of degree k whose leading coefficients are relatively prime to q, we have

$$
S_{\mathcal{B}}:=\left\{\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \in \mathbb{Z}_{q}: \underline{x} \in \mathcal{B}\right\}, \quad\left|S_{\mathcal{B}}\right| \gg_{k} q .
$$

The value set of $\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$

The reason we we went through the trouble of proving this upper bound was to show that the value set of a sum of such polynomials is of comparable size to the size of the modulus. Specifically

Lemma

For any positive integers k, n, B, q with $n \geq \frac{1}{2}\left(k^{2}+k+2\right)$, cube \mathcal{B} with side length $B>q^{1 / k}$, and polynomials $f_{1}(x), \ldots, f_{n}(x) \in \mathbb{Z}[x]$ of degree k whose leading coefficients are relatively prime to q, we have

$$
S_{\mathcal{B}}:=\left\{\sum_{i=1}^{n} f_{i}\left(x_{i}\right) \in \mathbb{Z}_{q}: \underline{x} \in \mathcal{B}\right\}, \quad\left|S_{\mathcal{B}}\right| \gg_{k} q
$$

The proof is entirely based on the relationship $\left|S_{\mathcal{B}}\right| \geq B^{2 n} / N_{q}(\mathcal{B} \times \mathcal{B})$ and the theorem that provided the upper bound for $N_{q}(\mathcal{B} \times \mathcal{B})$.

In order to prove our theorem, the variant of the Cauchy-Davenport Theorem by Cochrane, Ostergaard, and Spencer, is used.

Theorem
Let $n \geq 1$ and A_{1}, \ldots, A_{r} be finite, nonempty subsets of an abelian group G, such that no A_{i} is contained in a coset of a proper subgroup of G. Then

$$
\left|A_{1}+\cdots+A_{r}\right| \geq \min \left\{|G|,\left(\frac{1}{2}+\frac{1}{2 r}\right) \sum_{i=1}^{r}\left|A_{i}\right|\right\} .
$$

In order to prove our theorem, the variant of the Cauchy-Davenport Theorem by Cochrane, Ostergaard, and Spencer, is used.

Theorem
Let $n \geq 1$ and A_{1}, \ldots, A_{r} be finite, nonempty subsets of an abelian group G, such that no A_{i} is contained in a coset of a proper subgroup of G. Then

$$
\left|A_{1}+\cdots+A_{r}\right| \geq \min \left\{|G|,\left(\frac{1}{2}+\frac{1}{2 r}\right) \sum_{i=1}^{r}\left|A_{i}\right|\right\} .
$$

Let A_{1}, \ldots, A_{r} be value sets of the type $S_{\mathcal{B}}$. Then since we have shown that such sets are of size $\geq \frac{q}{w_{k}}$ we only need to calculate r, as long as they are not contained in a coset of a proper subgroup.

In order to prove our theorem, the variant of the Cauchy-Davenport Theorem by Cochrane, Ostergaard, and Spencer, is used.

Theorem

Let $n \geq 1$ and A_{1}, \ldots, A_{r} be finite, nonempty subsets of an abelian group G, such that no A_{i} is contained in a coset of a proper subgroup of G. Then

$$
\left|A_{1}+\cdots+A_{r}\right| \geq \min \left\{|G|,\left(\frac{1}{2}+\frac{1}{2 r}\right) \sum_{i=1}^{r}\left|A_{i}\right|\right\} .
$$

Let A_{1}, \ldots, A_{r} be value sets of the type $S_{\mathcal{B}}$. Then since we have shown that such sets are of size $\geq \frac{q}{w_{k}}$ we only need to calculate r, as long as they are not contained in a coset of a proper subgroup.
A necessary and sufficient condition for $S_{\mathcal{B}}$ to be contained in such a coset is that there is prime $p \mid q$ such that polynomials are constant mod p on the edge of our cube.

Proof of the Main Theorem

Proof.

Let $B>\max \left\{q^{1 / k}, k\right\}$ and let p be any prime divisor of q. If $p \leq B$, every edge contains a full set of residues mod p so $f_{i}\left(x_{i}\right)$ takes on at least two distinct values $\bmod p$; since by assumption the polynomial is not constant modp. On the other hand, if $p>B$, then for fixed a, the congruence $f_{i}\left(x_{i}\right) \equiv a(\bmod p)$ has at most $k<B$ solutions on the edge $\left[c_{i}+1, c_{i}+B\right]$, and so again $f_{i}\left(x_{i}\right)$ takes on at least two distinct values mod p on each edge. Thus sets of the type $S_{\mathcal{B}}$ are not contained in a coset of a proper subgroup of \mathbb{Z}_{q}.

Proof of the Main Theorem

Proof.

Let $B>\max \left\{q^{1 / k}, k\right\}$ and let p be any prime divisor of q. If $p \leq B$, every edge contains a full set of residues mod p so $f_{i}\left(x_{i}\right)$ takes on at least two distinct values $\bmod p$; since by assumption the polynomial is not constant modp. On the other hand, if $p>B$, then for fixed a, the congruence $f_{i}\left(x_{i}\right) \equiv a(\bmod p)$ has at most $k<B$ solutions on the edge $\left[c_{i}+1, c_{i}+B\right]$, and so again $f_{i}\left(x_{i}\right)$ takes on at least two distinct values mod p on each edge. Thus sets of the type $S_{\mathcal{B}}$ are not contained in a coset of a proper subgroup of \mathbb{Z}_{q}.

According to what was mentioned earlier it follows that for $r \geq 2 w_{k}-1$, we have $A_{1}+\cdots+A_{r}=\mathbb{Z}_{q}$. Set $r=\left\lceil 2 w_{k}\right\rceil-1$. If we start with a form in at least $\frac{1}{2}\left(k^{2}+k+2\right) r$ variables, we may partition the variables into r disjoint sets, each with at least $\frac{1}{2}\left(k^{2}+k+2\right)$ variables, and form r value sets A_{1}, \ldots, A_{r} of the type $S_{\mathcal{B}}$, with $A_{1}+\cdots+A_{r}=\mathbb{Z}_{q}$, completing the proof.

Thank you!

[1] J. Bourgain, C. Demeter, L. Guth, Proof of the Main Conjecture in Vinogradov's Mean Value Theorem for Degrees Higher Than Three, Ann. of Math. 184(2) (2016), 633-682.
[2] T. Cochrane, M. Ostergaard, and C. Spencer, Solutions to diagonal congruences with variables restricted to a box, Mathematika 64 (2018), 430-444.
[3] \qquad Cauchy-Davenport theorem for Abelian groups and diagonal congruences, Proc. Amer. Math. Soc. 147 (2019), 3339-3345.
[4] K. Ford, Waring's problem with polynomial summands, J. London Math. Soc. 61 (2000), 671-680.
[5] L.-K. Hua, On Waring's problem with polynomial summands, Amer. J. Math. 58 (1936), 553-562.
[6] \qquad , On a generalized Waring problem, Proc. London Math. Soc. (2) 43 (1937), 161-182.
[7] _ On a generalized Waring problem II, J. Chinese Math. Soc. 2 (1940), 175-191.
[8] E. Kamke, Verallgemeinerungen des Waring'Hilbertschen Satzes, Math. Ann. 83 (1921), 85-112.
[9] V. I. Načaev, Waring's problem for polynomials, Amer. Math. Soc. Transl. 3 (1956), 39-89.
[10] I. M. Vinogradov, New estimates for Weyl sums, Dokl. Akad. Nauk SSSR 8 (1935), 195-198.
[11] T. D. Wooley, On exponential sums over smooth numbers, J. Reine Angew. Math. 488 (1997), 79-140.
[12] \qquad , Nested efficient congruencing and relatives of Vinogradov's mean value theorem, Proc. Lond. Math. Soc. 118 (2019), 942-1016.

