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Main Theorem

Introduction

The goal of this talk is to obtain solutions to the congruence

f1(x1) + f2(x2) + · · ·+ fn(xn) ≡ c (mod q).

with the variables restricted to a cube B

B := {x ∈ Zn : ci + 1 ≤ xi ≤ ci +B, 1 ≤ i ≤ n}

and optimize the size of B. For convenience we also use the notation B(c,B)
when ci = c, ∀i and B0 = B(0, B)
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Main Theorem

Theorem

More specifically we obtain the following theorem on the distribution of the
solutions.
Theorem

Let q, n, k be a positive integers, c be an integer, and f1(x), . . . , fn(x) ∈ Z[x] be
polynomials of degree k whose leading coefficients are relatively prime to q.
Suppose that for 1 ≤ i ≤ n and p | q with p prime, fi(x) is not constant modulo
p.There exists a constant N(k) such that if n > N(k) and B is a cube of side
length B > max{q1/k, k}, then there is a solution of the congruence
n∑

i=1

fi(xi) ≡ c (mod q) in B.
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Main Theorem

Quality of the bound
This theorem is a generalization of the work of T.Cochrane, M. Ostergaard, and
C. Spencer, which handles the case where each fi(x) is of the form aix

k with
(ai, q) = 1. This is similar to how various authors have studied a generalized
Waring problem that allows for polynomial summands; see for instance the work
of Kamke, Hua, Načaev, Wooley, and Ford.

The theorem is best possible up to the determination of N(k) and improvement in
the constant 1 in front of q1/k.

Indeed, consider the congruence

xk
1 + · · ·+ xk

n ≡ ⌈q/2⌉ (mod q),

and box B with 1 ≤ xi ≤ B, 1 ≤ i ≤ n. Plainly with n = N(k) we will need
B ≫k q1/k in order to solve this congruence. In the statement of the theorem, the
condition that fi(x) is not constant modulo p is equivalent to requiring that
(xp − x) ∤ (fi(x)− fi(0)) over (Z/pZ) [x].
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A General Upper Bound on the Number of Solutions

General Upper Bound

Crucial to the proof, is an upper bound for the number of the solutions of

f1(x1) + f2(x2) + · · ·+ fn(xn) ≡ c (mod q).

We denote that number as Nq(B).

Theorem

Let q, n, k be a positive integers, c be an integer, and f1(x), . . . , fn(x) ∈ Z[x] be
degree-k polynomials whose leading coefficients are relatively prime to q. Suppose
n ≥ k2 + k + 2 and B be is a cube of edge length B ≤ q. Then

Nq(B) ≪k
Bn

q
+Bn−k.
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A General Upper Bound on the Number of Solutions

Proof of the Upper Bound

For the proof of this theorem the following notation will be used. Let Zq denote
the residue class ring modulo q and eq(·) := e2πi(·)/q, an additive character on Zq.
For any subsets S1, . . . , S2n of Zq, put S = S1 × · · · × Sn. Define

In,k,f (S) := #
{
(x, y) ∈ S× S :

n∑
i=1

f(xi) ≡
n∑

i=1

f(yi) (mod q)
}
.

along with T = S1 × · · · × S2n and Sn
i to be the cartesian product of Si with

itself n times. We begin the proof of the theorem with the following lemma.

Lemma

Let q, n, k be a positive integers, c be an integer, and f1(x), . . . , f2n(x) ∈ Z[x] be
degree-k polynomials whose leading coefficients are relatively prime to q. Then

#
{
x ∈ T :

2n∑
i=1

fi(xi) ≡ c (mod q)
}
≤

2n∏
i=1

In,k,fi(Sn
i )

1
2n .
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A General Upper Bound on the Number of Solutions

Proof of Lemma

Proof.
We have

#{x ∈ T :
2n∑
i=1

fi(xi) ≡ c (mod q)} =
1

q

∑
x∈T

q∑
λ=1

eq

(
λ

(
2n∑
i=1

fi(xi)− c

))

≤ 1

q

q∑
λ=1

∣∣∣∣∣eq(−λc)

2n∏
i=1

∑
xi∈Si

eq (λfi(xi))

∣∣∣∣∣
≤ 1

q

 q∑
λ=1

∣∣∣∣∣ ∑
x1∈S1

eq(λf1(x1))

∣∣∣∣∣
2n
 1

2n

. . .

 q∑
λ=1

∣∣∣∣∣ ∑
x2n∈S2n

eq(λf2n(x2n))

∣∣∣∣∣
2n
 1

2n

,

by Hölder’s inequality.
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A General Upper Bound on the Number of Solutions

Proof.
Now, for 1 ≤ i ≤ n, the sum

q∑
λ=1

∣∣∣∣∣ ∑
xi∈Si

eq(λfi(xi))

∣∣∣∣∣
2n

is q times the number of solution of the congruence

fi(x1) + · · ·+ fi(xn) ≡ fi(y1) + · · ·+ fi(yn) (mod q),

with variables restricted to Si. Therefore,

#{x ∈ T :

2n∑
i=1

fi(xi) ≡ c (mod q)} ≤ 1

q

2n∏
i=1

(qIn,k,fi(S
n
i ))

1
2n =

2n∏
i=1

In,k,fi(S
n
i )

1
2n .
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Relating In,k,f (B) to Jn,k(B) and J∗
n,k(B)

Relating In,k,f(B) to Jn,k(B) and J∗
n,k(B)

A bound will be acquired for In,k,f (B) with the help from bounds of Jn,k(B) the
number of solutions to the system of congruences

x1 + · · ·+ xn ≡ y1 + · · ·+ yn (mod q),

x2
1 + · · ·+ x2

n ≡ y21 + · · ·+ y2n (mod q),

... (1)
xk
1 + · · ·+ xk

n ≡ yk1 + · · ·+ ykn (mod q)

with (x, y) ∈ B0 ×B0. Those are achieved utilizing known results for J∗
n,k(B), the

number of solutions of the same system over the integers .
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Relating In,k,f (B) to Jn,k(B) and J∗
n,k(B)

More specifically
Lemma

For any positive integers B,n, k, q with B ≤ q, integer c, cube B(c,B) of the
aforementioned shape, and polynomial f(x) = αkx

k + · · ·+ α0 ∈ Z[x] with
(αk, q) = 1, we have

In,k,f (B) ≤ (2n)k−1B
k(k−1)

2 Jn,k(B).

The fundamental idea of the proof is that the congruence we are interested in
satisfies a system of equations whose number of solutions is bounded by Jn,k(B).

That is:

(x1 − c) + · · ·+ (xn − c) ≡ (y1 − c) + · · ·+ (yn − c) + h1 (mod q)

... (2)
(x1 − c)k−1 + · · ·+ (xn − c)k−1 ≡ (y1 − c)k−1 + · · ·+ (yn − c)k−1 + hk−1 (mod q)

f(x1) + · · ·+ f(xn) ≡ f(y1) + · · ·+ f(yn) (mod q)

with (x, y) ∈ B × B
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Relating In,k,f (B) to Jn,k(B) and J∗
n,k(B)

Proof of 4

The number of solutions, N(h), of the previous system, is bounded from above by
the case were all the hj = 0. This follows by applying the triangle inequality to
the exponential sum representation for the number of solutions of the system,

1

qk

q∑
λ1=1

· · ·
q∑

λk=1

eq(−λ1h1 − · · · − λk−1hk−1)
∑
x∈B

∑
y∈B

eq

λk

(
n∑

i=1

f(xi)−
n∑

i=1

f(yi)

)
+

k−1∑
j=1

λj

(
n∑

i=1

(xi − c)j −
n∑

i=1

(yi − c)j

) .
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Relating In,k,f (B) to Jn,k(B) and J∗
n,k(B)

By a change of variables xi → xi + c, yi → yi + c, N(0) equals the number of
solutions of the system of congruences

x1 + · · ·+ xn ≡ y1 + · · ·+ yn (mod q)

...
xk−1
1 + · · ·+ xk−1

n ≡ yk−1
1 + · · ·+ yk−1

n (mod q)

f(x1 + c) + · · ·+ f(xn + c) ≡ f(y1 + c) + · · ·+ f(yn + c) (mod q),

with (x, y) ∈ B0 × B0.

By the Binomial Theorem, the congruence

f(x1 + c) + · · ·+ f(xn + c) ≡ f(y1 + c) + · · ·+ f(yn + c) (mod q)

can be replaced with

xk
1 + · · ·+ xk

n ≡ yk1 + · · ·+ ykn (mod q).

since the leading coefficients are relatively prime to q. The proof is complete by
taking into account the contribution of all possible options for the hi .
Therefore, N(h1, . . . , hk−1) ≤ N(0) ≤ Jn,k(B) uniformly.
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Results about J∗
n,k(B)

Correlation of Jn,k(B) and J∗
n,k(B)

By results of Cochrane, Ostergaard, and Spencer, which relates Jn,k(B) to
J∗
n,k(B), the following bound is immediate.

Lemma

For any positive integers B,n, k, q with B ≤ q, integer c, cube B(c,B), and
polynomial f(x) = αkx

k + · · ·+ α0 ∈ Z[x] with (αk, q) = 1, we have

In,k,f (B) ≤ 5(2n)kB
1
2k(k−1)

(
Bk

q
+

1

2n

)
J∗
n,k(B).

Cochrane, Kydoniatis, Spencer (KSU) 32 Èmes Journées Arithmétiques 2023 Thursday, 6 July 13 / 20



Results about J∗
n,k(B)

Bounds for J∗
n,k(B)

The task of estimating J∗
n,k(B) has been a central problem in additive number

theory since Vinogradov’s seminal work on Waring’s problem. By the recent work
of Bourgain, Demeter, and Guth and Wooley, there exists a positive constant
c1(n, k) such that for n > 1

2k(k + 1), one has

J∗
n,k(B) ≤ c1(n, k)B

2n− 1
2k(k+1).

Here is where the condition n ≥ k2 + k + 2 stems from. Combining this result
with the previous upper bound for In,k,f (B), we obtain the following upper bound.

Cochrane, Kydoniatis, Spencer (KSU) 32 Èmes Journées Arithmétiques 2023 Thursday, 6 July 14 / 20



Results about J∗
n,k(B)

Finalizing the proof of the upper bound

Proposition

For any positive integers B,n, k, q with B ≤ q and n > 1
2k(k + 1), integer c, cube

B(c,B), and polynomial f(x) = αkx
k + · · ·+α0 ∈ Z[x] with (αk, q) = 1, we have

In,k,f (B) ≤ 5 c1(n, k)(2n)
k

(
B2n

q
+

1

2n
B2n−k

)
.

where c1(n, k) is the positive constant appearing in the previous bound.

The proof of upper bound for the number of the solutions is now complete if one
combines the above proposition with a previous lemma.

Cochrane, Kydoniatis, Spencer (KSU) 32 Èmes Journées Arithmétiques 2023 Thursday, 6 July 15 / 20



Lower bound on the value set

The value set of
∑n

i=1 fi(xi)

The reason we we went through the trouble of proving this upper bound was to
show that the value set of a sum of such polynomials is of comparable size to the
size of the modulus. Specifically
Lemma

For any positive integers k, n,B, q with n ≥ 1
2 (k

2 + k + 2), cube B with side
length B > q1/k, and polynomials f1(x), . . . , fn(x) ∈ Z[x] of degree k whose
leading coefficients are relatively prime to q, we have

SB :=

{
n∑

i=1

fi(xi) ∈ Zq : x ∈ B

}
, |SB| ≫k q.

The proof is entirely based on the relationship |SB| ≥ B2n/Nq(B × B) and the
theorem that provided the upper bound for Nq(B × B).
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Proof of Theorem

In order to prove our theorem, the variant of the Cauchy-Davenport Theorem by
Cochrane, Ostergaard, and Spencer, is used.
Theorem

Let n ≥ 1 and A1, . . . , Ar be finite, nonempty subsets of an abelian group G,
such that no Ai is contained in a coset of a proper subgroup of G. Then

|A1 + · · ·+Ar| ≥ min
{
|G|,

(
1
2 + 1

2r

) r∑
i=1

|Ai|

}
.

Let A1, . . . , Ar be value sets of the type SB. Then since we have shown that such
sets are of size ≥ q

wk
we only need to calculate r, as long as they are not

contained in a coset of a proper subgroup.
A necessary and sufficient condition for SB to be contained in such a coset is that
there is prime p|q such that polynomials are constant mod p on the edge of our
cube.
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Proof of Theorem

Proof of the Main Theorem

Proof.
Let B > max{q1/k, k} and let p be any prime divisor of q. If p ≤ B, every edge
contains a full set of residues mod p so fi(xi) takes on at least two distinct values
mod p; since by assumption the polynomial is not constant modp. On the other
hand, if p > B, then for fixed a, the congruence fi(xi) ≡ a (mod p) has at most
k < B solutions on the edge [ci + 1, ci +B], and so again fi(xi) takes on at least
two distinct values mod p on each edge. Thus sets of the type SB are not
contained in a coset of a proper subgroup of Zq.

According to what was mentioned earlier it follows that for r ≥ 2wk − 1, we have
A1 + · · ·+Ar = Zq. Set r = ⌈2wk⌉ − 1. If we start with a form in at least
1
2 (k

2 + k + 2)r variables, we may partition the variables into r disjoint sets, each
with at least 1

2 (k
2 + k+2) variables, and form r value sets A1, . . . , Ar of the type

SB, with A1 + · · ·+Ar = Zq, completing the proof.
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