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Introduction

Some Definitions
A (discrete) dynamical system is a pair (f ,S) of a set S and a map
f : S −→ S .

For n ∈ N, define the nth-iteration of f as

f (n) := f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

The (forward) orbit of z ∈ S by f is defined as

Of (z) := {z , f (z), f (2)(z), f (3)(z), . . .}.
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Introduction

Some Definitions (continued)

A point z ∈ S is called periodic with respect to f if f (k)(z) = z for
some k ∈ N and we call the smallest such k the minimal period of z .

The set of periodic points of f (in S) is denoted by Per(f ,S).
A point z ∈ S is called preperiodic with respect to f if f (k)(z) is
periodic for some k ∈ N, which is equivalent to that Of (z) is finite.
The set of preperiodic points of f (in S) is denoted by PrePer(f ,S).
We say that a point z ∈ S is wandering if z is not preperiodic.

For arithmetic interests, we can let S be N,Z,Q, K, . . .
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Example

φ(z) = z2− 29
16 .

Is z = 0 preperiodic?

0 7→ −29
16
7→ 377

256
7→ 23345

65536
7→ · · ·

No, it’s not preperiodic.
Is z = 1

4 preperiodic?

1
4
7→ −7

4
7→ −5

4
7→ −1

4
7→ −7

4
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Conjecture (Morton-Silverman Uniform Boundedness, 1994)
There exists a bound B = B(D,N,d) such that if K is a number field of
degree D, and φ : PN(K )−→ PN(K ) is a morphism of degree d ≥ 2 defined
over K , then the number of preperiodic points of φ is bounded by B.

This conjecture is remarkably strong. For (D,N,d) = (1,1,4), the
conjecture implies that the size of the torsion subgroup of an elliptic curve
is uniformly bounded. This can be done via the associated Lattès map.
Similarly, for (D,N,d) = (D,1,4), the conjecture implies the Merel’s
theorem.
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Theorem (Northcott, 1950)
Let φ ∈ K (z) of degree d ≥ 2. Then

PrePer(φ ,K )< ∞.

Conjecture (Morton-Silverman, Q version)
For any integer d ≥ 2, there is a constant C (d) such that for any φ ∈Q(z)
of degree d,

PrePer(φ)≤ C (d).
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Rational periodic points

Theorem
Let φc(z) = z2+ c.

1 There are infinitely many c ∈Q such that φc(z) has a Q-rational point
of period 1, 2 or 3.

2 (Morton, 1998, Flynn-Poonen-Schaefer, 1997) There is no c ∈Q such
that φc(z) has a Q-rational point of period 4 or 5.

3 (Stoll, 2008) There is no c ∈Q such that φc(z) has a Q-rational point
of period 6 (based on Birch and Swinnerton-Dyer Conjecture).
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How about fc(x) = xd + c over Q?

For every d ∈ N, there are infinitely many c ∈Q such that
fc(x) = xd + c has a fixed point in Q, i.e., c = t− td , t ∈Q.

For every odd d ≥ 3 and n ≥ 2, fc(x) has no n-periodic point in Q.

For every even d ≥ 2, f−1(x) = xd −1 has "trivial" 2-periodic points:
1−→ 0←→−1.
For d=4 and n = 2, there are infinitely many c ∈Q such that
fc(x) = x4+ c has 2-periodic points.

F ∗2 (x ,c) =
f
(2)
c (x)−x

fc(x)−x
= 0 ; E : y2 = x3−4

Ex: fc(x) = x4− 19561
10000

,
9
10
←→ −13

10
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2-periodic points of x4+ c

Theorem

There are infinitely many c ∈Q such that f4,c(x) = x4+ c has rational
periodic points of exact period 2.

The parametrization of such c and
2-periodic points x1,x2 are as follows. The parameter c is in the form

c =
t6+4t3−1

4t2

and the 2-periodic points are

x1,x2 =
t2±
√
−t4−2t
2t

,

where −t4−2t = y2 for some y ∈Q.
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Lemma (Hutz, 2015)

Let fd ,c(x) = xd + c ∈ K [x ] and let α ∈ A(K ) be a preperiodic point of
fd ,c . Then for each nonarchimedean place v such that v(c)< 0, we have
v(c) = dv(α). For each nonarchimedean place v such that v(c)≥ 0, we
have v(α)≥ 0.

Corollary

If
X

Z
is a rational preperiodic point of fd ,c(x) = xd + c with c =

M

N
and

both
X

Z
and

M

N
are rational numbers expressed in the lowest terms with Z

and N positive integers, then N = Zd .
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2-periodic points and Fermat-Catalan Equations

Theorem

Let k ,n be positive integers such that n > 1, and fd ,c(x) = xd + c ∈Q[x ],
where d = 2k . If X1/Z and X2/Z = fd ,c(X1/Z ) are rational periodic points
of exact period n of fd ,c with c = C/Zd , and X1/Z ,X2/Z and C/Zd are
rational numbers expressed in the lowest terms with integers X1,X2 and Z ,
then gcd(X1,X2) = 1. Moreover, for n = 2,
a) X k

1 +X k
2 = δZ 2k−1

1 for some Z1 ∈ Z and δ ∈ {1,2},
b) if k is odd, then X k

1 +X k
2 = Z 2k−1

1 for some Z1 ∈ Z.
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fd ,c(x) = xd + c

Conjecture (Generalized Poonen, Hutz 2015)

For n > 3, there is no integer d ≥ 2 and c ∈Q such that fd ,c(x) = xd + c
has a rational periodic point of exact period n. For maps of the form fd ,c ,
we have

#PrePer(fd ,c ,P1(Q))≤ 9.
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fd ,c(x) = xd + c

Theorem (Narkierwicz, 2013)
For n > 1 and d > 2 odd, there is no c ∈Q such that fd ,c has a Q-rational
periodic point of minimal period n. Furthermore,

#PrePer(fd ,c ,P1(Q))≤ 4.

Actually, Narkierwicz’s statement is for number fields.

Conjecture (Hutz, 2015)
For n > 2 there is no even d > 2 and c ∈Q such that fd ,c has a Q-rational
periodic point of minimal period n. Furthermore,

#PrePer(fd ,c ,P1(Q))≤ 4.
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2-Periodic Points: Modular Method

There are many useful results of Fermat Catalan equation xp+ yq = z r

of signature (p,q, r) = (p,p, r) (Darmon’s Program) such as works of
Bennett, Ellenberg, Ng, Darmon, Merel, Freitas, etc.

Theorem (Bennett-Vatsal-Yazdani, 2004)
Let C ∈ {1,2,3,5,7,11,13,15,17,19} and prime number n >max{C ,4},
then the Diophantine equation xn+ yn = Cz3 has no solutions in coprime
nonzero integers x ,y and z with |xy |> 1.

Theorem
Let k be an integer with a prime factor p ≥ 5 and f2k,c(x) = x2k + c where
c ∈Q\{−1}. If 3 | 2k−1, then f2k,c has no rational periodic point of exact
period 2.

C. Panraksa (MU) Arithmetic Dynamics 6 July 2023 15 / 27



abc-Conjecture

Definition

Let n =
s

∏
i=1

pki ∈ N. The radical of n is defined as

rad(n) :=
s

∏
i=1

pi .

Conjecture ( Masser and Oestelé 1988))
For every ε > 0, there exists a constant Kε > 0 such that for all triples
(a,b,c) of coprime positve integers, with a+b = c such that

c < Kε rad(abc)
1+ε .
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Theorem (Uniform Boundedness for xd + c , Looper, 2021)

Let d ≥ 2 and K be a number field. Let fd ,c(x) = xd + c ∈ K [x ]. If d ≥ 5,
assume the abc-conjecture. If 2≤ d ≤ 4, assume the abcd-conjecture.
There is a B = B(d ,K ) such that fd ,c has at most B preperiodic points.

Theorem (UB for Polynomials, Looper, 2021+)
Let K be a number field and let f (z) ∈ K [z ] be a polynomial of degree
d ≥ 2. Assume the abcd-conjecture. Then there is a constant B = B(d ,K )
such that f has at most B preperiodic points contained in K .
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Explicit abc−Conjecture

Conjecture (Explicit abc−conjecture, Baker, 2004)
There exists an absolute constant K such that for all triples (a,b,c) of
coprime integers with a+b = c , abc ̸= 0 and N = rad(|abc|),

max(|a|, |b|, |c |)< KN
(log(N))ω

ω!

where ω is the total number of distinct primes dividing a, b and c.

C. Panraksa (MU) Arithmetic Dynamics 6 July 2023 18 / 27



Explicit abc−Conjecture

Conjecture (Explicit abc−conjecture, Laishram and Shorey
2012 (ε = 3/4))
Assume the explicit abc-conjecture. For all triples (a,b,c) of coprime
positive integers with a+b = c , we have

c < (rad(abc))1+
3
4 .

Theorem (Chim-Shorey-Sinha, 2019)
Assume the explicit abc-conjecture. For all triples (a,b,c) of coprime
integers with a+b = c , abc ̸= 0 and N = rad(|abc|), we have

max(|a|, |b|, |c|)<min(N1.72,10N1.62991,32N1.6).
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abc-Conjecture

Lemma (xd + yd = δzd−1)

Assume the abc conjecture. Then the system
X d

2 −X d
1 = (X3−X2)Z

d−1,Z ̸= 0
gcd(X1,X2) = 1
max(|X1|, |X2|, |X3|) = |X2|
max(|X2|, |Z |)> 1

has no integer solutions for sufficiently large positive integers k ,m.
Moreover, if we assume the explicit abc−conjecture, then the result holds
for d ≥ 10.
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Preperiodic Points of xd + c

Theorem (P., 2022)

Let fd ,c(x) = xd + c ∈Q[x ]. If the abc-conjecture is valid, then for
sufficiently large degree d ,

1 fd ,c has no point of type 12 (i.e., x−2→ x−1→ x0 ⟲),
2 fd ,c has no rational periodic points of exact period greater than 1

except when c =−1 (xd −1 : 1→ 0←→−1, ∞ ⟲),
3 #PrePer(fd ,c ,P1(Q))≤ 4.

Moreover, if we assume the explicit abc-conjecture, then the result holds
for d ≥ 7.
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The ADS by Joseph H. Silverman

C. Panraksa (MU) Arithmetic Dynamics 6 July 2023 22 / 27



CURRENT TRENDS AND OPEN PROBLEMS IN
ARITHMETIC DYNAMICS, 2019
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