

Raivydas Šimėnas 32èmes Journées Arithmétiques July 3, 2023

Vilnius University

Abstract

The fundamental theorem of arithmetic gives an important property of natural numbers: every natural number can be uniquely expressed as a product of primes. A similar decomposition can be defined in the set of meromorphic functions, except this time we use the composition of functions.

I will study the conditions under which functions belonging to the extended Selberg class are prime. In addition, I will give an analogous result about the Hurwitz zeta function.

Definition Let *f* be a meromorphic function satisfying

$$f = g \circ h \tag{1}$$

with g meromorphic and h entire or h meromorphic and g rational. Then the expression (1) is called a *decomposition* of f.

Definition

If for all decompositions (1) of *f*, *g* or *h* is a linear function, then *f* is *prime*.

If for all decompositions (1), either *g* is rational or *h* is a polynomial, then *f* is *pseudo prime*. If *g* is linear whenever *h* is transcendental, then *f* is *left prime*. If *h* is linear whenever *g* is transcendental, then *f* is *right prime*

The Selberg class $\mathcal S$ consists of functions satisfying these axioms

- (simple Dirichlet series) $F(s) = \sum_{n=1}^{\infty} a(n)n^{-s}$ which converges absolutely in the half plane $\sigma > 1$.
- (analytic continuation) there exists a non-negative integer k such that $(s 1)^k F(s)$ is entire of finite order.
- (functional equation) F(s) satisfies

$$\Lambda_F(S) = \omega \overline{\Lambda_F(1-\overline{S})}.$$

- (Ramanujan hypothesis) $a(n) \ll n^{\epsilon}$ for all ϵ , where the implicit constant does not depend on ϵ .
- (Euler product) $\log F(s) = \sum_{n=}^{\infty} b_F(n)n^{-s}$, where $b_F(n) = 0$ except when $n = p^m$ for some prime p with $m \ge 1$ and $b_F(n) \ll n^{\theta}$ for some $\theta < 1/2$.

The *extended Selberg class* $S^{\#}$ consists of the Dirichlet series satisfying the first three axioms of the Selberg class.

Definition

The *degree* of $F \in S^{\#}$ is $d_F = 2 \sum_{j=1}^{N} \lambda_j$ where λ_j come from the functional equation. The degree is an invariant of *F*.

The zeros of *F* coming from the poles of the Gamma function in the functional equation are called *trivial*. Their distribution is known.

Theorem

A function $F\in \mathcal{S}^{\#},$ $d_F>1$ is pseudo prime and right prime

Definition

Let $E \subset \mathbb{C}$. If $\theta \in [0, 2\pi)$ is an accumulation point of the set $S = \{\arg s : s \in E\}$, then the set $\{s : \arg s = \theta\}$ is an *accumulation line* of *E*.

Lemma (Monakhov)

Let *f* be an entire function and let there exist a sequence (ω_n) satisfying $\lim_{n\to\infty} |\omega_n| = \infty$ and

$$\bigcup_{n=1}^{\infty} \{ s : f(s) = \omega_n \}$$

has $q \ (< \infty)$ accumulation lines (except possibly for a finite number of ω_n). Then f is at most 2q degree polynomial.

Lemma

Let $ad - bc \neq 0$, $f : \mathbb{C} \to \mathbb{C}$ is a meromorphic function and h(z) = (af(z) + b)/(cf(z) + d). Then h(z) is transcendental if and only if f(z) is transcendental. In addition, h(z) and f(z) are of the same order.

Lemma (Polya)

If f(s) and h(s) are entire functions and f(h(s)) is an entire function of finite order, then there are two possibilities:

- the inner function h(s) is a polynomial and the outer function f(s) is of finite order; or
- 2. the inner function *h*(s) is not a polynomial but of finite order, and the outer function *f*(s) is of zero order.

Lemma (Edrei and Fuchs)

Let f(s) be a meromorphic function of non-zero order and h(s) be an entire function that is non-polynomial. Then f(h(s)) is of infinite order.

Lemma

Let a_1, a_2 be any two distinct complex numbers or infinity. Let f be a meromorphic function of finite order. Let the number of accumulation lines of the set $E = \{s : f(s) = a_j\}$ be finite. Then f is pseudo prime.

Proof.

If f is not prime, then we have a decomposition f(s) = g(h(s))where g(z) is transcendental meromorphic and h(z) is transcendental entire. According to the Edrei and Fuchs lemma, g(z) is of order zero. According to the Monakhov lemma, $g(z) = a_j$, j = 1, 2 has a finite number of roots; otherwise, h(z) would be a polynomial. Therefore

$$G(s) := \frac{g(s) - a_1}{g(s) - a_2} = R(s)e^{L(s)},$$

where R(z) is rational and L(z) is an entire function that is non-constant.

Proof (continued).

According to one of the lemmas and the property $T(r, G(s)/R(s)) \leq T(r, G(s)) + T(r, 1/R(s))$ (*T* is the Nevanlinna characteristic), we have that G(s)/R(s) is an entire function of zero order. The order *n* of the function $e^{L(s)}$ is positive since L(s) is non-constant. The contradiction proves the lemma.

Proof.

Take $a_1 = 0$ and $a_2 = \infty$. Then the function $F(s) \in S^{\#}$ is pseudo prime by the above lemma.

We will prove that *F* is right prime. Let F(s) = f(h(s)) be a decomposition. Since *F* is pseudo prime, *f* is rational, or *h* is a polynomial. We are only interested in the case when *f* is transcendental. Thus, without loss of generality, suppose that *h* is a polynomial. The set $S^{\#}$ consists of the Dirichlet series. Therefore F(s) = O(1), $\sigma \to \infty$ uniformly. We have $\lim_{|s|\to\infty} F(s) = \infty$ uniformly in the set

$$A := \{ s : \pi/2 + \epsilon \le \arg s \le \pi - \epsilon \text{ or } \pi + \epsilon \le \arg s \le 3\pi/2 - \epsilon \}.$$

Proof of the right primeness of the Selberg class functions

Proof (continued). Let $h(s) = a_d s^d + a_{d-1} s^{d-1} + \ldots + a_0$, $a_d \neq 0$. Let ℓ_1, \ldots, ℓ_d be the pre-images of the half-lines $\ell = \{s : \arg a = \pi_2 - \arg a_d\}$ under the action of the polynomial h. Let us enumerate the preimages in such a way that as we approach infinity, the curve ℓ_j is close to the half-line

 $L_j := \{s : \arg s = \pi/2d - \arg a_d/d + 2j\pi/2\}$. Thus taking $d \ge 2$, there exist indices p and q such that L_p (except for a finite portion) are in the half-plane $\sigma > 2$ and L_q is in the set A. Thus we have

$$\lim_{\substack{|s|\to\infty\\s\in\ell_p}} = 1 \text{ and } \lim_{\substack{|s|\to\infty\\s\in\ell_q}} = \infty.$$

On the other side, F(s) = f(h(s)) and $h(\ell_p) = \ell = h(\ell_q)$, thus $F(\ell_p) = F(\ell_q)$, a contradiction. Therefore d = 1.

Definition The *Hurwitz zeta function* is defined

$$\zeta(s,a):=\sum_{n=0}^{\infty}\frac{1}{(n+a)^s}.$$

Here $\Re s > 1$ and $0 < a \le 1$. It is continued meromorphically to the rest of the complex plane except for the simple pole at s = 1 with residue 1. Observe that $\zeta(s, 1) = \zeta(s)$.

Theorem Hurwitz zeta function is prime.

Proof.

Pseudo-primeness is proved, as in the case of the extended Selberg class. To prove primeness, we use the Nevanlinna theory.

References

- C. T. Chuang and C. C. Yang. "Fix points and factorization of meromorphic functions". In: *Topics in Complex Analysis* (1990).
- [2] M. Dundulis et al. "Hurwitz zeta function is prime". In: Mathematics 11.5 (2023).